syncthing/vendor/golang.org/x/text/unicode/norm/transform_test.go
Jakob Borg 65aaa607ab Use Go 1.5 vendoring instead of Godeps
Change made by:

- running "gvt fetch" on each of the packages mentioned in
  Godeps/Godeps.json
- `rm -rf Godeps`
- tweaking the build scripts to not mention Godeps
- tweaking the build scripts to test `./lib/...`, `./cmd/...` explicitly
  (to avoid testing vendor)
- tweaking the build scripts to not juggle GOPATH for Godeps and instead
  set GO15VENDOREXPERIMENT.

This also results in some updated packages at the same time I bet.

Building with Go 1.3 and 1.4 still *works* but won't use our vendored
dependencies - the user needs to have the actual packages in their
GOPATH then, which they'll get with a normal "go get". Building with Go
1.6+ will get our vendored dependencies by default even when not using
our build script, which is nice.

By doing this we gain some freedom in that we can pick and choose
manually what to include in vendor, as it's not based on just dependency
analysis of our own code. This is also a risk as we might pick up
dependencies we are unaware of, as the build may work locally with those
packages present in GOPATH. On the other hand the build server will
detect this as it has no packages in it's GOPATH beyond what is included
in the repo.

Recommended tool to manage dependencies is github.com/FiloSottile/gvt.
2016-03-05 21:21:24 +01:00

102 lines
3.2 KiB
Go

// Copyright 2011 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package norm
import (
"fmt"
"testing"
"golang.org/x/text/transform"
)
func TestTransform(t *testing.T) {
tests := []struct {
f Form
in, out string
eof bool
dstSize int
err error
}{
{NFC, "ab", "ab", true, 2, nil},
{NFC, "qx", "qx", true, 2, nil},
{NFD, "qx", "qx", true, 2, nil},
{NFC, "", "", true, 1, nil},
{NFD, "", "", true, 1, nil},
{NFC, "", "", false, 1, nil},
{NFD, "", "", false, 1, nil},
// Normalized segment does not fit in destination.
{NFD, "ö", "", true, 1, transform.ErrShortDst},
{NFD, "ö", "", true, 2, transform.ErrShortDst},
// As an artifact of the algorithm, only full segments are written.
// This is not strictly required, and some bytes could be written.
// In practice, for Transform to not block, the destination buffer
// should be at least MaxSegmentSize to work anyway and these edge
// conditions will be relatively rare.
{NFC, "ab", "", true, 1, transform.ErrShortDst},
// This is even true for inert runes.
{NFC, "qx", "", true, 1, transform.ErrShortDst},
{NFC, "a\u0300abc", "\u00e0a", true, 4, transform.ErrShortDst},
// We cannot write a segment if succesive runes could still change the result.
{NFD, "ö", "", false, 3, transform.ErrShortSrc},
{NFC, "a\u0300", "", false, 4, transform.ErrShortSrc},
{NFD, "a\u0300", "", false, 4, transform.ErrShortSrc},
{NFC, "ö", "", false, 3, transform.ErrShortSrc},
{NFC, "a\u0300", "", true, 1, transform.ErrShortDst},
// Theoretically could fit, but won't due to simplified checks.
{NFC, "a\u0300", "", true, 2, transform.ErrShortDst},
{NFC, "a\u0300", "", true, 3, transform.ErrShortDst},
{NFC, "a\u0300", "\u00e0", true, 4, nil},
{NFD, "öa\u0300", "o\u0308", false, 8, transform.ErrShortSrc},
{NFD, "öa\u0300ö", "o\u0308a\u0300", true, 8, transform.ErrShortDst},
{NFD, "öa\u0300ö", "o\u0308a\u0300", false, 12, transform.ErrShortSrc},
// Illegal input is copied verbatim.
{NFD, "\xbd\xb2=\xbc ", "\xbd\xb2=\xbc ", true, 8, nil},
}
b := make([]byte, 100)
for i, tt := range tests {
nDst, _, err := tt.f.Transform(b[:tt.dstSize], []byte(tt.in), tt.eof)
out := string(b[:nDst])
if out != tt.out || err != tt.err {
t.Errorf("%d: was %+q (%v); want %+q (%v)", i, out, err, tt.out, tt.err)
}
if want := tt.f.String(tt.in)[:nDst]; want != out {
t.Errorf("%d: incorect normalization: was %+q; want %+q", i, out, want)
}
}
}
var transBufSizes = []int{
MaxTransformChunkSize,
3 * MaxTransformChunkSize / 2,
2 * MaxTransformChunkSize,
3 * MaxTransformChunkSize,
100 * MaxTransformChunkSize,
}
func doTransNorm(f Form, buf []byte, b []byte) []byte {
acc := []byte{}
for p := 0; p < len(b); {
nd, ns, _ := f.Transform(buf[:], b[p:], true)
p += ns
acc = append(acc, buf[:nd]...)
}
return acc
}
func TestTransformNorm(t *testing.T) {
for _, sz := range transBufSizes {
buf := make([]byte, sz)
runNormTests(t, fmt.Sprintf("Transform:%d", sz), func(f Form, out []byte, s string) []byte {
return doTransNorm(f, buf, append(out, s...))
})
}
}