mdadm/monitor.c
Dan Williams 8d45d1969b handle disk failures
From: Dan Williams <dan.j.williams@intel.com>

Added curr_state as a parameter to set_disk.  Handlers look at this to
record components failures, and set global 'degraded' or 'failed'
status.

When reading the state as faulty:
1/ mark the disk failed in the metadata

2/ write '-blocked' to the rdev state to allow the kernel's failure
   mechanism to advance

3/ the kernel will take away the drive's role in remove_and_add_spares()

4/ once the disk no longer has a role writing 'remove' to the rdev state
   will get the disk out of array.

There is a window after writing '-blocked' where the kernel will return
-EBUSY to remove requests.  We rely on the fact that the disk will
continue to show faulty so we lazily wait until the kernel is ready to
remove the disk.  If the manager thread needs to get the disk out of the
way it can ping the monitor and wait, just like the replace_array()
case.

[buglet fix: swap the parameters of attr_match in read_dev_state]

Signed-off-by: Dan Williams <dan.j.williams@intel.com>
2008-05-15 16:48:49 +10:00

413 lines
9.2 KiB
C

#include "mdadm.h"
#include "mdmon.h"
#include <sys/select.h>
static char *array_states[] = {
"clear", "inactive", "suspended", "readonly", "read-auto",
"clean", "active", "write-pending", "active-idle", NULL };
static char *sync_actions[] = {
"idle", "reshape", "resync", "recover", "check", "repair", NULL
};
static int write_attr(char *attr, int fd)
{
return write(fd, attr, strlen(attr));
}
static void add_fd(fd_set *fds, int *maxfd, int fd)
{
if (fd < 0)
return;
if (fd > *maxfd)
*maxfd = fd;
FD_SET(fd, fds);
}
static int read_attr(char *buf, int len, int fd)
{
int n;
if (fd < 0) {
buf[0] = 0;
return 0;
}
lseek(fd, 0, 0);
n = read(fd, buf, len - 1);
if (n <= 0) {
buf[0] = 0;
return 0;
}
buf[n] = 0;
if (buf[n-1] == '\n')
buf[n-1] = 0;
return n;
}
static int get_sync_pos(struct active_array *a)
{
char buf[30];
int n;
n = read_attr(buf, 30, a->sync_pos_fd);
if (n <= 0)
return n;
if (strncmp(buf, "max", 3) == 0) {
a->sync_pos = ~(unsigned long long)0;
return 1;
}
a->sync_pos = strtoull(buf, NULL, 10);
return 1;
}
static int get_resync_start(struct active_array *a)
{
char buf[30];
int n;
n = read_attr(buf, 30, a->resync_start_fd);
if (n <= 0)
return n;
a->resync_start = strtoull(buf, NULL, 10);
return 1;
}
static int attr_match(const char *attr, const char *str)
{
/* See if attr, read from a sysfs file, matches
* str. They must either be the same, or attr can
* have a trailing newline or comma
*/
while (*attr && *str && *attr == *str) {
attr++;
str++;
}
if (*str || (*attr && *attr != ',' && *attr != '\n'))
return 0;
return 1;
}
static int match_word(const char *word, char **list)
{
int n;
for (n=0; list[n]; n++)
if (attr_match(word, list[n]))
break;
return n;
}
static enum array_state read_state(int fd)
{
char buf[20];
int n = read_attr(buf, 20, fd);
if (n <= 0)
return bad_word;
return (enum array_state) match_word(buf, array_states);
}
static enum sync_action read_action( int fd)
{
char buf[20];
int n = read_attr(buf, 20, fd);
if (n <= 0)
return bad_action;
return (enum sync_action) match_word(buf, sync_actions);
}
int read_dev_state(int fd)
{
char buf[60];
int n = read_attr(buf, 60, fd);
char *cp;
int rv = 0;
if (n <= 0)
return 0;
cp = buf;
while (cp) {
if (attr_match(cp, "faulty"))
rv |= DS_FAULTY;
if (attr_match(cp, "in_sync"))
rv |= DS_INSYNC;
if (attr_match(cp, "write_mostly"))
rv |= DS_WRITE_MOSTLY;
if (attr_match(cp, "spare"))
rv |= DS_SPARE;
if (attr_match(cp, "blocked"))
rv |= DS_BLOCKED;
cp = strchr(cp, ',');
if (cp)
cp++;
}
return rv;
}
/* Monitor a set of active md arrays - all of which share the
* same metadata - and respond to events that require
* metadata update.
*
* New arrays are detected by another thread which allocates
* required memory and attaches the data structure to our list.
*
* Events:
* Array stops.
* This is detected by array_state going to 'clear' or 'inactive'.
* while we thought it was active.
* Response is to mark metadata as clean and 'clear' the array(??)
* write-pending
* array_state if 'write-pending'
* We mark metadata as 'dirty' then set array to 'active'.
* active_idle
* Either ignore, or mark clean, then mark metadata as clean.
*
* device fails
* detected by rd-N/state reporting "faulty"
* mark device as 'failed' in metadata, let the kernel release the
* device by writing '-blocked' to rd/state, and finally write 'remove' to
* rd/state
*
* sync completes
* sync_action was 'resync' and becomes 'idle' and resync_start becomes
* MaxSector
* Notify metadata that sync is complete.
* "Deal with Degraded"
*
* recovery completes
* sync_action changes from 'recover' to 'idle'
* Check each device state and mark metadata if 'faulty' or 'in_sync'.
* "Deal with Degraded"
*
* deal with degraded array
* We only do this when first noticing the array is degraded.
* This can be when we first see the array, when sync completes or
* when recovery completes.
*
* Check if number of failed devices suggests recovery is needed, and
* skip if not.
* Ask metadata for a spare device
* Add device as not in_sync and give a role
* Update metadata.
* Start recovery.
*
* deal with resync
* This only happens on finding a new array... mdadm will have set
* 'resync_start' to the correct value. If 'resync_start' indicates that an
* resync needs to occur set the array to the 'active' state rather than the
* initial read-auto state.
*
*
*
* We wait for a change (poll/select) on array_state, sync_action, and
* each rd-X/state file.
* When we get any change, we check everything. So read each state file,
* then decide what to do.
*
* The core action is to write new metadata to all devices in the array.
* This is done at most once on any wakeup.
* After that we might:
* - update the array_state
* - set the role of some devices.
* - request a sync_action
*
*/
static int read_and_act(struct active_array *a)
{
int check_degraded;
int deactivate = 0;
struct mdinfo *mdi;
a->next_state = bad_word;
a->next_action = bad_action;
a->curr_state = read_state(a->info.state_fd);
a->curr_action = read_action(a->action_fd);
for (mdi = a->info.devs; mdi ; mdi = mdi->next) {
mdi->next_state = 0;
if (mdi->state_fd > 0)
mdi->curr_state = read_dev_state(mdi->state_fd);
}
if (a->curr_state <= inactive &&
a->prev_state > inactive) {
/* array has been stopped */
get_sync_pos(a);
a->container->ss->mark_clean(a, a->sync_pos);
a->next_state = clear;
deactivate = 1;
}
if (a->curr_state == write_pending) {
a->container->ss->mark_dirty(a);
a->next_state = active;
}
if (a->curr_state == active_idle) {
/* Set array to 'clean' FIRST, then
* a->ss->mark_clean(a);
* just ignore for now.
*/
}
if (a->curr_state == readonly) {
/* Well, I'm ready to handle things, so
* read-auto is OK. FIXME what if we really want
* readonly ???
*/
get_resync_start(a);
if (a->resync_start == ~0ULL)
a->next_state = read_auto; /* array is clean */
else {
a->container->ss->mark_dirty(a);
a->next_state = active;
}
}
if (a->curr_action == idle &&
a->prev_action == resync) {
/* check resync_start to see if it is 'max' */
get_resync_start(a);
a->container->ss->mark_sync(a, a->resync_start);
check_degraded = 1;
}
if (a->curr_action == idle &&
a->prev_action == recover) {
for (mdi = a->info.devs ; mdi ; mdi = mdi->next) {
a->container->ss->set_disk(a, mdi->disk.raid_disk,
mdi->curr_state);
if (! (mdi->curr_state & DS_INSYNC))
check_degraded = 1;
}
}
for (mdi = a->info.devs ; mdi ; mdi = mdi->next) {
if (mdi->curr_state & DS_FAULTY) {
a->container->ss->set_disk(a, mdi->disk.raid_disk,
mdi->curr_state);
check_degraded = 1;
mdi->next_state = DS_REMOVE;
}
}
if (check_degraded) {
// FIXME;
}
a->container->ss->sync_metadata(a);
/* Effect state changes in the array */
if (a->next_state != bad_word)
write_attr(array_states[a->next_state], a->info.state_fd);
if (a->next_action != bad_action)
write_attr(sync_actions[a->next_action], a->action_fd);
for (mdi = a->info.devs; mdi ; mdi = mdi->next) {
if (mdi->next_state == DS_REMOVE && mdi->state_fd > 0) {
int remove_err;
write_attr("-blocked", mdi->state_fd);
/* the kernel may not be able to immediately remove the
* disk, we can simply wait until the next event to try
* again.
*/
remove_err = write_attr("remove", mdi->state_fd);
if (!remove_err) {
close(mdi->state_fd);
mdi->state_fd = -1;
}
}
if (mdi->next_state & DS_INSYNC)
write_attr("+in_sync", mdi->state_fd);
}
/* move curr_ to prev_ */
a->prev_state = a->curr_state;
a->prev_action = a->curr_action;
for (mdi = a->info.devs; mdi ; mdi = mdi->next) {
mdi->prev_state = mdi->curr_state;
mdi->next_state = 0;
}
if (deactivate)
a->container = NULL;
return 1;
}
static int wait_and_act(struct active_array *aa, int pfd, int nowait)
{
fd_set rfds;
int maxfd = 0;
struct active_array *a;
int rv;
FD_ZERO(&rfds);
add_fd(&rfds, &maxfd, pfd);
for (a = aa ; a ; a = a->next) {
struct mdinfo *mdi;
/* once an array has been deactivated only the manager
* thread can make us care about it again
*/
if (!a->container)
continue;
add_fd(&rfds, &maxfd, a->info.state_fd);
add_fd(&rfds, &maxfd, a->action_fd);
for (mdi = a->info.devs ; mdi ; mdi = mdi->next)
add_fd(&rfds, &maxfd, mdi->state_fd);
}
if (!nowait) {
rv = select(maxfd+1, &rfds, NULL, NULL, NULL);
if (rv <= 0)
return rv;
if (FD_ISSET(pfd, &rfds)) {
char buf[4];
read(pfd, buf, 4);
; // FIXME read from the pipe
}
}
for (a = aa; a ; a = a->next) {
if (a->replaces && !discard_this) {
struct active_array **ap;
for (ap = &a->next; *ap && *ap != a->replaces;
ap = & (*ap)->next)
;
if (*ap)
*ap = (*ap)->next;
discard_this = a->replaces;
a->replaces = NULL;
}
if (a->container)
rv += read_and_act(a);
}
return rv;
}
void do_monitor(struct supertype *container)
{
int rv;
int first = 1;
do {
rv = wait_and_act(container->arrays, container->pipe[0], first);
first = 0;
} while (rv >= 0);
}