mdadm/super1.c
Doug Ledford 16715c01f7 Fix readding of a readwrite drive into a writemostly array
If you create a two drive raid1 array with one device writemostly, then
fail the readwrite drive, when you add a new device, it will get the
writemostly bit copied out of the remaining device's superblock into
it's own.  You can then remove the new drive and readd it as readwrite,
which will work for the readd, but it leaves the stale WriteMostly1 bit
in devflags resulting in the device going back to writemostly on the
next assembly.

The fix is to make sure that A) when we readd a device and we might have
filled the st->sb info from a running device instead of the device being
readded, then clear/set the WriteMostly1 bit in the super1 struct in
addition to setting the disk state (ditto for super0, but slightly
different mechanism) and B) when adding a clean device to an array (when
we most certainly did copy the superblock info from an existing device),
then clear any writemostly bits.

Signed-off-by: Doug Ledford <dledford@redhat.com>
Signed-off-by: NeilBrown <neilb@suse.de>
2011-09-19 13:06:38 +10:00

1747 lines
47 KiB
C

/*
* mdadm - manage Linux "md" devices aka RAID arrays.
*
* Copyright (C) 2001-2009 Neil Brown <neilb@suse.de>
*
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
*
* Author: Neil Brown
* Email: <neilb@suse.de>
*/
#include "mdadm.h"
/*
* The version-1 superblock :
* All numeric fields are little-endian.
*
* total size: 256 bytes plus 2 per device.
* 1K allows 384 devices.
*/
struct mdp_superblock_1 {
/* constant array information - 128 bytes */
__u32 magic; /* MD_SB_MAGIC: 0xa92b4efc - little endian */
__u32 major_version; /* 1 */
__u32 feature_map; /* 0 for now */
__u32 pad0; /* always set to 0 when writing */
__u8 set_uuid[16]; /* user-space generated. */
char set_name[32]; /* set and interpreted by user-space */
__u64 ctime; /* lo 40 bits are seconds, top 24 are microseconds or 0*/
__u32 level; /* -4 (multipath), -1 (linear), 0,1,4,5 */
__u32 layout; /* only for raid5 currently */
__u64 size; /* used size of component devices, in 512byte sectors */
__u32 chunksize; /* in 512byte sectors */
__u32 raid_disks;
__u32 bitmap_offset; /* sectors after start of superblock that bitmap starts
* NOTE: signed, so bitmap can be before superblock
* only meaningful of feature_map[0] is set.
*/
/* These are only valid with feature bit '4' */
__u32 new_level; /* new level we are reshaping to */
__u64 reshape_position; /* next address in array-space for reshape */
__u32 delta_disks; /* change in number of raid_disks */
__u32 new_layout; /* new layout */
__u32 new_chunk; /* new chunk size (bytes) */
__u8 pad1[128-124]; /* set to 0 when written */
/* constant this-device information - 64 bytes */
__u64 data_offset; /* sector start of data, often 0 */
__u64 data_size; /* sectors in this device that can be used for data */
__u64 super_offset; /* sector start of this superblock */
__u64 recovery_offset;/* sectors before this offset (from data_offset) have been recovered */
__u32 dev_number; /* permanent identifier of this device - not role in raid */
__u32 cnt_corrected_read; /* number of read errors that were corrected by re-writing */
__u8 device_uuid[16]; /* user-space setable, ignored by kernel */
__u8 devflags; /* per-device flags. Only one defined...*/
#define WriteMostly1 1 /* mask for writemostly flag in above */
__u8 pad2[64-57]; /* set to 0 when writing */
/* array state information - 64 bytes */
__u64 utime; /* 40 bits second, 24 btes microseconds */
__u64 events; /* incremented when superblock updated */
__u64 resync_offset; /* data before this offset (from data_offset) known to be in sync */
__u32 sb_csum; /* checksum upto dev_roles[max_dev] */
__u32 max_dev; /* size of dev_roles[] array to consider */
__u8 pad3[64-32]; /* set to 0 when writing */
/* device state information. Indexed by dev_number.
* 2 bytes per device
* Note there are no per-device state flags. State information is rolled
* into the 'roles' value. If a device is spare or faulty, then it doesn't
* have a meaningful role.
*/
__u16 dev_roles[0]; /* role in array, or 0xffff for a spare, or 0xfffe for faulty */
};
struct misc_dev_info {
__u64 device_size;
};
/* feature_map bits */
#define MD_FEATURE_BITMAP_OFFSET 1
#define MD_FEATURE_RECOVERY_OFFSET 2 /* recovery_offset is present and
* must be honoured
*/
#define MD_FEATURE_RESHAPE_ACTIVE 4
#define MD_FEATURE_ALL (1|2|4)
#ifndef offsetof
#define offsetof(t,f) ((size_t)&(((t*)0)->f))
#endif
static unsigned int calc_sb_1_csum(struct mdp_superblock_1 * sb)
{
unsigned int disk_csum, csum;
unsigned long long newcsum;
int size = sizeof(*sb) + __le32_to_cpu(sb->max_dev)*2;
unsigned int *isuper = (unsigned int*)sb;
/* make sure I can count... */
if (offsetof(struct mdp_superblock_1,data_offset) != 128 ||
offsetof(struct mdp_superblock_1, utime) != 192 ||
sizeof(struct mdp_superblock_1) != 256) {
fprintf(stderr, "WARNING - superblock isn't sized correctly\n");
}
disk_csum = sb->sb_csum;
sb->sb_csum = 0;
newcsum = 0;
for (; size>=4; size -= 4 ) {
newcsum += __le32_to_cpu(*isuper);
isuper++;
}
if (size == 2)
newcsum += __le16_to_cpu(*(unsigned short*) isuper);
csum = (newcsum & 0xffffffff) + (newcsum >> 32);
sb->sb_csum = disk_csum;
return __cpu_to_le32(csum);
}
static char abuf[4096+4096];
static int aread(int fd, void *buf, int len)
{
/* aligned read.
* On devices with a 4K sector size, we need to read
* the full sector and copy relevant bits into
* the buffer
*/
int bsize;
char *b;
int n;
if (ioctl(fd, BLKSSZGET, &bsize) != 0 ||
bsize <= len)
return read(fd, buf, len);
if (bsize > 4096)
return -1;
b = (char*)(((long)(abuf+4096))&~4095UL);
n = read(fd, b, bsize);
if (n <= 0)
return n;
lseek(fd, len - n, 1);
if (n > len)
n = len;
memcpy(buf, b, n);
return n;
}
static int awrite(int fd, void *buf, int len)
{
/* aligned write.
* On devices with a 4K sector size, we need to write
* the full sector. We pre-read if the sector is larger
* than the write.
* The address must be sector-aligned.
*/
int bsize;
char *b;
int n;
if (ioctl(fd, BLKSSZGET, &bsize) != 0 ||
bsize <= len)
return write(fd, buf, len);
if (bsize > 4096)
return -1;
b = (char*)(((long)(abuf+4096))&~4095UL);
n = read(fd, b, bsize);
if (n <= 0)
return n;
lseek(fd, -n, 1);
memcpy(b, buf, len);
n = write(fd, b, bsize);
if (n <= 0)
return n;
lseek(fd, len - n, 1);
return len;
}
#ifndef MDASSEMBLE
static void examine_super1(struct supertype *st, char *homehost)
{
struct mdp_superblock_1 *sb = st->sb;
time_t atime;
unsigned int d;
int role;
int delta_extra = 0;
int i;
char *c;
int l = homehost ? strlen(homehost) : 0;
int layout;
unsigned long long sb_offset;
printf(" Magic : %08x\n", __le32_to_cpu(sb->magic));
printf(" Version : 1");
sb_offset = __le64_to_cpu(sb->super_offset);
if (sb_offset <= 4)
printf(".1\n");
else if (sb_offset <= 8)
printf(".2\n");
else
printf(".0\n");
printf(" Feature Map : 0x%x\n", __le32_to_cpu(sb->feature_map));
printf(" Array UUID : ");
for (i=0; i<16; i++) {
if ((i&3)==0 && i != 0) printf(":");
printf("%02x", sb->set_uuid[i]);
}
printf("\n");
printf(" Name : %.32s", sb->set_name);
if (l > 0 && l < 32 &&
sb->set_name[l] == ':' &&
strncmp(sb->set_name, homehost, l) == 0)
printf(" (local to host %s)", homehost);
printf("\n");
atime = __le64_to_cpu(sb->ctime) & 0xFFFFFFFFFFULL;
printf(" Creation Time : %.24s\n", ctime(&atime));
c=map_num(pers, __le32_to_cpu(sb->level));
printf(" Raid Level : %s\n", c?c:"-unknown-");
printf(" Raid Devices : %d\n", __le32_to_cpu(sb->raid_disks));
printf("\n");
printf(" Avail Dev Size : %llu%s\n",
(unsigned long long)__le64_to_cpu(sb->data_size),
human_size(__le64_to_cpu(sb->data_size)<<9));
if (__le32_to_cpu(sb->level) > 0) {
int ddsks=0;
switch(__le32_to_cpu(sb->level)) {
case 1: ddsks=1;break;
case 4:
case 5: ddsks = __le32_to_cpu(sb->raid_disks)-1; break;
case 6: ddsks = __le32_to_cpu(sb->raid_disks)-2; break;
case 10:
layout = __le32_to_cpu(sb->layout);
ddsks = __le32_to_cpu(sb->raid_disks)
/ (layout&255) / ((layout>>8)&255);
}
if (ddsks)
printf(" Array Size : %llu%s\n",
ddsks*(unsigned long long)__le64_to_cpu(sb->size),
human_size(ddsks*__le64_to_cpu(sb->size)<<9));
if (sb->size != sb->data_size)
printf(" Used Dev Size : %llu%s\n",
(unsigned long long)__le64_to_cpu(sb->size),
human_size(__le64_to_cpu(sb->size)<<9));
}
if (sb->data_offset)
printf(" Data Offset : %llu sectors\n",
(unsigned long long)__le64_to_cpu(sb->data_offset));
printf(" Super Offset : %llu sectors\n",
(unsigned long long)__le64_to_cpu(sb->super_offset));
if (__le32_to_cpu(sb->feature_map) & MD_FEATURE_RECOVERY_OFFSET)
printf("Recovery Offset : %llu sectors\n", (unsigned long long)__le64_to_cpu(sb->recovery_offset));
printf(" State : %s\n", (__le64_to_cpu(sb->resync_offset)+1)? "active":"clean");
printf(" Device UUID : ");
for (i=0; i<16; i++) {
if ((i&3)==0 && i != 0) printf(":");
printf("%02x", sb->device_uuid[i]);
}
printf("\n");
printf("\n");
if (sb->feature_map & __cpu_to_le32(MD_FEATURE_BITMAP_OFFSET)) {
printf("Internal Bitmap : %ld sectors from superblock\n",
(long)(int32_t)__le32_to_cpu(sb->bitmap_offset));
}
if (sb->feature_map & __le32_to_cpu(MD_FEATURE_RESHAPE_ACTIVE)) {
printf(" Reshape pos'n : %llu%s\n", (unsigned long long)__le64_to_cpu(sb->reshape_position)/2,
human_size(__le64_to_cpu(sb->reshape_position)<<9));
if (__le32_to_cpu(sb->delta_disks)) {
printf(" Delta Devices : %d", __le32_to_cpu(sb->delta_disks));
printf(" (%d->%d)\n",
__le32_to_cpu(sb->raid_disks)-__le32_to_cpu(sb->delta_disks),
__le32_to_cpu(sb->raid_disks));
if ((int)__le32_to_cpu(sb->delta_disks) < 0)
delta_extra = -__le32_to_cpu(sb->delta_disks);
}
if (__le32_to_cpu(sb->new_level) != __le32_to_cpu(sb->level)) {
c = map_num(pers, __le32_to_cpu(sb->new_level));
printf(" New Level : %s\n", c?c:"-unknown-");
}
if (__le32_to_cpu(sb->new_layout) != __le32_to_cpu(sb->layout)) {
if (__le32_to_cpu(sb->level) == 5) {
c = map_num(r5layout, __le32_to_cpu(sb->new_layout));
printf(" New Layout : %s\n", c?c:"-unknown-");
}
if (__le32_to_cpu(sb->level) == 6) {
c = map_num(r6layout, __le32_to_cpu(sb->new_layout));
printf(" New Layout : %s\n", c?c:"-unknown-");
}
if (__le32_to_cpu(sb->level) == 10) {
printf(" New Layout :");
print_r10_layout(__le32_to_cpu(sb->new_layout));
printf("\n");
}
}
if (__le32_to_cpu(sb->new_chunk) != __le32_to_cpu(sb->chunksize))
printf(" New Chunksize : %dK\n", __le32_to_cpu(sb->new_chunk)/2);
printf("\n");
}
if (sb->devflags) {
printf(" Flags :");
if (sb->devflags & WriteMostly1)
printf(" write-mostly");
printf("\n");
}
atime = __le64_to_cpu(sb->utime) & 0xFFFFFFFFFFULL;
printf(" Update Time : %.24s\n", ctime(&atime));
if (calc_sb_1_csum(sb) == sb->sb_csum)
printf(" Checksum : %x - correct\n", __le32_to_cpu(sb->sb_csum));
else
printf(" Checksum : %x - expected %x\n", __le32_to_cpu(sb->sb_csum),
__le32_to_cpu(calc_sb_1_csum(sb)));
printf(" Events : %llu\n", (unsigned long long)__le64_to_cpu(sb->events));
printf("\n");
if (__le32_to_cpu(sb->level) == 5) {
c = map_num(r5layout, __le32_to_cpu(sb->layout));
printf(" Layout : %s\n", c?c:"-unknown-");
}
if (__le32_to_cpu(sb->level) == 6) {
c = map_num(r6layout, __le32_to_cpu(sb->layout));
printf(" Layout : %s\n", c?c:"-unknown-");
}
if (__le32_to_cpu(sb->level) == 10) {
int lo = __le32_to_cpu(sb->layout);
printf(" Layout :");
print_r10_layout(lo);
printf("\n");
}
switch(__le32_to_cpu(sb->level)) {
case 0:
case 4:
case 5:
case 6:
case 10:
printf(" Chunk Size : %dK\n", __le32_to_cpu(sb->chunksize)/2);
break;
case -1:
printf(" Rounding : %dK\n", __le32_to_cpu(sb->chunksize)/2);
break;
default: break;
}
printf("\n");
#if 0
/* This turns out to just be confusing */
printf(" Array Slot : %d (", __le32_to_cpu(sb->dev_number));
for (i= __le32_to_cpu(sb->max_dev); i> 0 ; i--)
if (__le16_to_cpu(sb->dev_roles[i-1]) != 0xffff)
break;
for (d=0; d < i; d++) {
int role = __le16_to_cpu(sb->dev_roles[d]);
if (d) printf(", ");
if (role == 0xffff) printf("empty");
else if(role == 0xfffe) printf("failed");
else printf("%d", role);
}
printf(")\n");
#endif
printf(" Device Role : ");
d = __le32_to_cpu(sb->dev_number);
if (d < __le32_to_cpu(sb->max_dev))
role = __le16_to_cpu(sb->dev_roles[d]);
else
role = 0xFFFF;
if (role >= 0xFFFE)
printf("spare\n");
else
printf("Active device %d\n", role);
printf(" Array State : ");
for (d=0; d<__le32_to_cpu(sb->raid_disks) + delta_extra; d++) {
int cnt = 0;
unsigned int i;
for (i=0; i< __le32_to_cpu(sb->max_dev); i++) {
unsigned int role = __le16_to_cpu(sb->dev_roles[i]);
if (role == d)
cnt++;
}
if (cnt > 1) printf("?");
else if (cnt == 1) printf("A");
else printf (".");
}
#if 0
/* This is confusing too */
faulty = 0;
for (i=0; i< __le32_to_cpu(sb->max_dev); i++) {
int role = __le16_to_cpu(sb->dev_roles[i]);
if (role == 0xFFFE)
faulty++;
}
if (faulty) printf(" %d failed", faulty);
#endif
printf(" ('A' == active, '.' == missing)");
printf("\n");
}
static void brief_examine_super1(struct supertype *st, int verbose)
{
struct mdp_superblock_1 *sb = st->sb;
int i;
unsigned long long sb_offset;
char *nm;
char *c=map_num(pers, __le32_to_cpu(sb->level));
nm = strchr(sb->set_name, ':');
if (nm)
nm++;
else if (sb->set_name[0])
nm = sb->set_name;
else
nm = NULL;
printf("ARRAY%s%s", nm ? " /dev/md/":"", nm);
if (verbose && c)
printf(" level=%s", c);
sb_offset = __le64_to_cpu(sb->super_offset);
if (sb_offset <= 4)
printf(" metadata=1.1 ");
else if (sb_offset <= 8)
printf(" metadata=1.2 ");
else
printf(" metadata=1.0 ");
if (verbose)
printf("num-devices=%d ", __le32_to_cpu(sb->raid_disks));
printf("UUID=");
for (i=0; i<16; i++) {
if ((i&3)==0 && i != 0) printf(":");
printf("%02x", sb->set_uuid[i]);
}
if (sb->set_name[0])
printf(" name=%.32s", sb->set_name);
printf("\n");
}
static void export_examine_super1(struct supertype *st)
{
struct mdp_superblock_1 *sb = st->sb;
int i;
int len = 32;
printf("MD_LEVEL=%s\n", map_num(pers, __le32_to_cpu(sb->level)));
printf("MD_DEVICES=%d\n", __le32_to_cpu(sb->raid_disks));
for (i=0; i<32; i++)
if (sb->set_name[i] == '\n' ||
sb->set_name[i] == '\0') {
len = i;
break;
}
if (len)
printf("MD_NAME=%.*s\n", len, sb->set_name);
printf("MD_UUID=");
for (i=0; i<16; i++) {
if ((i&3)==0 && i != 0) printf(":");
printf("%02x", sb->set_uuid[i]);
}
printf("\n");
printf("MD_UPDATE_TIME=%llu\n",
__le64_to_cpu(sb->utime) & 0xFFFFFFFFFFULL);
printf("MD_DEV_UUID=");
for (i=0; i<16; i++) {
if ((i&3)==0 && i != 0) printf(":");
printf("%02x", sb->device_uuid[i]);
}
printf("\n");
printf("MD_EVENTS=%llu\n",
(unsigned long long)__le64_to_cpu(sb->events));
}
static void detail_super1(struct supertype *st, char *homehost)
{
struct mdp_superblock_1 *sb = st->sb;
int i;
int l = homehost ? strlen(homehost) : 0;
printf(" Name : %.32s", sb->set_name);
if (l > 0 && l < 32 &&
sb->set_name[l] == ':' &&
strncmp(sb->set_name, homehost, l) == 0)
printf(" (local to host %s)", homehost);
printf("\n UUID : ");
for (i=0; i<16; i++) {
if ((i&3)==0 && i != 0) printf(":");
printf("%02x", sb->set_uuid[i]);
}
printf("\n Events : %llu\n\n", (unsigned long long)__le64_to_cpu(sb->events));
}
static void brief_detail_super1(struct supertype *st)
{
struct mdp_superblock_1 *sb = st->sb;
int i;
if (sb->set_name[0])
printf(" name=%.32s", sb->set_name);
printf(" UUID=");
for (i=0; i<16; i++) {
if ((i&3)==0 && i != 0) printf(":");
printf("%02x", sb->set_uuid[i]);
}
}
static void export_detail_super1(struct supertype *st)
{
struct mdp_superblock_1 *sb = st->sb;
int i;
int len = 32;
for (i=0; i<32; i++)
if (sb->set_name[i] == '\n' ||
sb->set_name[i] == '\0') {
len = i;
break;
}
if (len)
printf("MD_NAME=%.*s\n", len, sb->set_name);
}
#endif
static int match_home1(struct supertype *st, char *homehost)
{
struct mdp_superblock_1 *sb = st->sb;
int l = homehost ? strlen(homehost) : 0;
return (l > 0 && l < 32 &&
sb->set_name[l] == ':' &&
strncmp(sb->set_name, homehost, l) == 0);
}
static void uuid_from_super1(struct supertype *st, int uuid[4])
{
struct mdp_superblock_1 *super = st->sb;
char *cuuid = (char*)uuid;
int i;
for (i=0; i<16; i++)
cuuid[i] = super->set_uuid[i];
}
static void getinfo_super1(struct supertype *st, struct mdinfo *info, char *map)
{
struct mdp_superblock_1 *sb = st->sb;
int working = 0;
unsigned int i;
unsigned int role;
unsigned int map_disks = info->array.raid_disks;
memset(info, 0, sizeof(*info));
info->array.major_version = 1;
info->array.minor_version = st->minor_version;
info->array.patch_version = 0;
info->array.raid_disks = __le32_to_cpu(sb->raid_disks);
info->array.level = __le32_to_cpu(sb->level);
info->array.layout = __le32_to_cpu(sb->layout);
info->array.md_minor = -1;
info->array.ctime = __le64_to_cpu(sb->ctime);
info->array.utime = __le64_to_cpu(sb->utime);
info->array.chunk_size = __le32_to_cpu(sb->chunksize)*512;
info->array.state =
(__le64_to_cpu(sb->resync_offset) >= __le64_to_cpu(sb->size))
? 1 : 0;
info->data_offset = __le64_to_cpu(sb->data_offset);
info->component_size = __le64_to_cpu(sb->size);
info->disk.major = 0;
info->disk.minor = 0;
info->disk.number = __le32_to_cpu(sb->dev_number);
if (__le32_to_cpu(sb->dev_number) >= __le32_to_cpu(sb->max_dev) ||
__le32_to_cpu(sb->max_dev) > 512)
role = 0xfffe;
else
role = __le16_to_cpu(sb->dev_roles[__le32_to_cpu(sb->dev_number)]);
info->disk.raid_disk = -1;
switch(role) {
case 0xFFFF:
info->disk.state = 0; /* spare: not active, not sync, not faulty */
break;
case 0xFFFE:
info->disk.state = 1; /* faulty */
break;
default:
info->disk.state = 6; /* active and in sync */
info->disk.raid_disk = role;
}
info->events = __le64_to_cpu(sb->events);
sprintf(info->text_version, "1.%d", st->minor_version);
info->safe_mode_delay = 200;
memcpy(info->uuid, sb->set_uuid, 16);
strncpy(info->name, sb->set_name, 32);
info->name[32] = 0;
if (sb->feature_map & __le32_to_cpu(MD_FEATURE_RECOVERY_OFFSET))
info->recovery_start = __le32_to_cpu(sb->recovery_offset);
else
info->recovery_start = MaxSector;
if (sb->feature_map & __le32_to_cpu(MD_FEATURE_RESHAPE_ACTIVE)) {
info->reshape_active = 1;
info->reshape_progress = __le64_to_cpu(sb->reshape_position);
info->new_level = __le32_to_cpu(sb->new_level);
info->delta_disks = __le32_to_cpu(sb->delta_disks);
info->new_layout = __le32_to_cpu(sb->new_layout);
info->new_chunk = __le32_to_cpu(sb->new_chunk)<<9;
if (info->delta_disks < 0)
info->array.raid_disks -= info->delta_disks;
} else
info->reshape_active = 0;
if (map)
for (i=0; i<map_disks; i++)
map[i] = 0;
for (i = 0; i < __le32_to_cpu(sb->max_dev); i++) {
role = __le16_to_cpu(sb->dev_roles[i]);
if (/*role == 0xFFFF || */role < (unsigned) info->array.raid_disks) {
working++;
if (map && role < map_disks)
map[role] = 1;
}
}
info->array.working_disks = working;
}
static struct mdinfo *container_content1(struct supertype *st, char *subarray)
{
struct mdinfo *info;
if (subarray)
return NULL;
info = malloc(sizeof(*info));
getinfo_super1(st, info, NULL);
return info;
}
static int update_super1(struct supertype *st, struct mdinfo *info,
char *update,
char *devname, int verbose,
int uuid_set, char *homehost)
{
/* NOTE: for 'assemble' and 'force' we need to return non-zero
* if any change was made. For others, the return value is
* ignored.
*/
int rv = 0;
struct mdp_superblock_1 *sb = st->sb;
if (strcmp(update, "force-one")==0) {
/* Not enough devices for a working array,
* so bring this one up-to-date
*/
if (sb->events != __cpu_to_le64(info->events))
rv = 1;
sb->events = __cpu_to_le64(info->events);
} else if (strcmp(update, "force-array")==0) {
/* Degraded array and 'force' requests to
* maybe need to mark it 'clean'.
*/
switch(__le32_to_cpu(sb->level)) {
case 5: case 4: case 6:
/* need to force clean */
if (sb->resync_offset != MaxSector)
rv = 1;
sb->resync_offset = MaxSector;
}
} else if (strcmp(update, "assemble")==0) {
int d = info->disk.number;
int want;
if (info->disk.state == 6)
want = info->disk.raid_disk;
else
want = 0xFFFF;
if (sb->dev_roles[d] != __cpu_to_le16(want)) {
sb->dev_roles[d] = __cpu_to_le16(want);
rv = 1;
}
if (info->reshape_active &&
sb->feature_map & __le32_to_cpu(MD_FEATURE_RESHAPE_ACTIVE) &&
info->delta_disks >= 0 &&
info->reshape_progress < __le64_to_cpu(sb->reshape_position)) {
sb->reshape_position = __cpu_to_le64(info->reshape_progress);
rv = 1;
}
if (info->reshape_active &&
sb->feature_map & __le32_to_cpu(MD_FEATURE_RESHAPE_ACTIVE) &&
info->delta_disks < 0 &&
info->reshape_progress > __le64_to_cpu(sb->reshape_position)) {
sb->reshape_position = __cpu_to_le64(info->reshape_progress);
rv = 1;
}
} else if (strcmp(update, "linear-grow-new") == 0) {
unsigned int i;
int rfd, fd;
unsigned int max = __le32_to_cpu(sb->max_dev);
for (i=0 ; i < max ; i++)
if (__le16_to_cpu(sb->dev_roles[i]) >= 0xfffe)
break;
sb->dev_number = __cpu_to_le32(i);
info->disk.number = i;
if (max >= __le32_to_cpu(sb->max_dev))
sb->max_dev = __cpu_to_le32(max+1);
if ((rfd = open("/dev/urandom", O_RDONLY)) < 0 ||
read(rfd, sb->device_uuid, 16) != 16) {
__u32 r[4] = {random(), random(), random(), random()};
memcpy(sb->device_uuid, r, 16);
}
if (rfd >= 0)
close(rfd);
sb->dev_roles[i] =
__cpu_to_le16(info->disk.raid_disk);
fd = open(devname, O_RDONLY);
if (fd >= 0) {
unsigned long long ds;
get_dev_size(fd, devname, &ds);
close(fd);
ds >>= 9;
if (__le64_to_cpu(sb->super_offset) <
__le64_to_cpu(sb->data_offset)) {
sb->data_size = __cpu_to_le64(
ds - __le64_to_cpu(sb->data_offset));
} else {
ds -= 8*2;
ds &= ~(unsigned long long)(4*2-1);
sb->super_offset = __cpu_to_le64(ds);
sb->data_size = __cpu_to_le64(
ds - __le64_to_cpu(sb->data_offset));
}
}
} else if (strcmp(update, "linear-grow-update") == 0) {
sb->raid_disks = __cpu_to_le32(info->array.raid_disks);
sb->dev_roles[info->disk.number] =
__cpu_to_le16(info->disk.raid_disk);
} else if (strcmp(update, "resync") == 0) {
/* make sure resync happens */
sb->resync_offset = 0ULL;
} else if (strcmp(update, "uuid") == 0) {
copy_uuid(sb->set_uuid, info->uuid, super1.swapuuid);
if (__le32_to_cpu(sb->feature_map)&MD_FEATURE_BITMAP_OFFSET) {
struct bitmap_super_s *bm;
bm = (struct bitmap_super_s*)(st->sb+1024);
memcpy(bm->uuid, sb->set_uuid, 16);
}
} else if (strcmp(update, "no-bitmap") == 0) {
sb->feature_map &= ~__cpu_to_le32(MD_FEATURE_BITMAP_OFFSET);
} else if (strcmp(update, "homehost") == 0 &&
homehost) {
char *c;
update = "name";
c = strchr(sb->set_name, ':');
if (c)
strncpy(info->name, c+1, 31 - (c-sb->set_name));
else
strncpy(info->name, sb->set_name, 32);
info->name[32] = 0;
} else if (strcmp(update, "name") == 0) {
if (info->name[0] == 0)
sprintf(info->name, "%d", info->array.md_minor);
memset(sb->set_name, 0, sizeof(sb->set_name));
if (homehost &&
strchr(info->name, ':') == NULL &&
strlen(homehost)+1+strlen(info->name) < 32) {
strcpy(sb->set_name, homehost);
strcat(sb->set_name, ":");
strcat(sb->set_name, info->name);
} else
strcpy(sb->set_name, info->name);
} else if (strcmp(update, "devicesize") == 0 &&
__le64_to_cpu(sb->super_offset) <
__le64_to_cpu(sb->data_offset)) {
/* set data_size to device size less data_offset */
struct misc_dev_info *misc = (struct misc_dev_info*)
(st->sb + 1024 + 512);
printf("Size was %llu\n", (unsigned long long)
__le64_to_cpu(sb->data_size));
sb->data_size = __cpu_to_le64(
misc->device_size - __le64_to_cpu(sb->data_offset));
printf("Size is %llu\n", (unsigned long long)
__le64_to_cpu(sb->data_size));
} else if (strcmp(update, "_reshape_progress")==0)
sb->reshape_position = __cpu_to_le64(info->reshape_progress);
else if (strcmp(update, "writemostly")==0)
sb->devflags |= WriteMostly1;
else if (strcmp(update, "readwrite")==0)
sb->devflags &= ~WriteMostly1;
else
rv = -1;
sb->sb_csum = calc_sb_1_csum(sb);
return rv;
}
static int init_super1(struct supertype *st, mdu_array_info_t *info,
unsigned long long size, char *name, char *homehost, int *uuid)
{
struct mdp_superblock_1 *sb;
int spares;
int rfd;
char defname[10];
if (posix_memalign((void**)&sb, 512, (1024 + 512 +
sizeof(struct misc_dev_info))) != 0) {
fprintf(stderr, Name
": %s could not allocate superblock\n", __func__);
return 0;
}
memset(sb, 0, 1024);
st->sb = sb;
if (info == NULL) {
/* zeroing superblock */
return 0;
}
spares = info->working_disks - info->active_disks;
if (info->raid_disks + spares > 384) {
fprintf(stderr, Name ": too many devices requested: %d+%d > %d\n",
info->raid_disks , spares, 384);
return 0;
}
sb->magic = __cpu_to_le32(MD_SB_MAGIC);
sb->major_version = __cpu_to_le32(1);
sb->feature_map = 0;
sb->pad0 = 0;
if (uuid)
copy_uuid(sb->set_uuid, uuid, super1.swapuuid);
else {
if ((rfd = open("/dev/urandom", O_RDONLY)) < 0 ||
read(rfd, sb->set_uuid, 16) != 16) {
__u32 r[4] = {random(), random(), random(), random()};
memcpy(sb->set_uuid, r, 16);
}
if (rfd >= 0) close(rfd);
}
if (name == NULL || *name == 0) {
sprintf(defname, "%d", info->md_minor);
name = defname;
}
memset(sb->set_name, 0, 32);
if (homehost &&
strchr(name, ':')== NULL &&
strlen(homehost)+1+strlen(name) < 32) {
strcpy(sb->set_name, homehost);
strcat(sb->set_name, ":");
strcat(sb->set_name, name);
} else
strcpy(sb->set_name, name);
sb->ctime = __cpu_to_le64((unsigned long long)time(0));
sb->level = __cpu_to_le32(info->level);
sb->layout = __cpu_to_le32(info->layout);
sb->size = __cpu_to_le64(size*2ULL);
sb->chunksize = __cpu_to_le32(info->chunk_size>>9);
sb->raid_disks = __cpu_to_le32(info->raid_disks);
sb->data_offset = __cpu_to_le64(0);
sb->data_size = __cpu_to_le64(0);
sb->super_offset = __cpu_to_le64(0);
sb->recovery_offset = __cpu_to_le64(0);
sb->utime = sb->ctime;
sb->events = __cpu_to_le64(1);
if (info->state & (1<<MD_SB_CLEAN))
sb->resync_offset = MaxSector;
else
sb->resync_offset = 0;
sb->max_dev = __cpu_to_le32((1024- sizeof(struct mdp_superblock_1))/
sizeof(sb->dev_roles[0]));
memset(sb->pad3, 0, sizeof(sb->pad3));
memset(sb->dev_roles, 0xff, 1024 - sizeof(struct mdp_superblock_1));
return 1;
}
struct devinfo {
int fd;
char *devname;
mdu_disk_info_t disk;
struct devinfo *next;
};
#ifndef MDASSEMBLE
/* Add a device to the superblock being created */
static int add_to_super1(struct supertype *st, mdu_disk_info_t *dk,
int fd, char *devname)
{
struct mdp_superblock_1 *sb = st->sb;
__u16 *rp = sb->dev_roles + dk->number;
struct devinfo *di, **dip;
if ((dk->state & 6) == 6) /* active, sync */
*rp = __cpu_to_le16(dk->raid_disk);
else if ((dk->state & ~2) == 0) /* active or idle -> spare */
*rp = 0xffff;
else
*rp = 0xfffe;
if (dk->number >= (int)__le32_to_cpu(sb->max_dev) &&
__le32_to_cpu(sb->max_dev) < 384)
sb->max_dev = __cpu_to_le32(dk->number+1);
sb->dev_number = __cpu_to_le32(dk->number);
sb->devflags = 0; /* don't copy another disks flags */
sb->sb_csum = calc_sb_1_csum(sb);
dip = (struct devinfo **)&st->info;
while (*dip)
dip = &(*dip)->next;
di = malloc(sizeof(struct devinfo));
di->fd = fd;
di->devname = devname;
di->disk = *dk;
di->next = NULL;
*dip = di;
return 0;
}
#endif
static void locate_bitmap1(struct supertype *st, int fd);
static int store_super1(struct supertype *st, int fd)
{
struct mdp_superblock_1 *sb = st->sb;
unsigned long long sb_offset;
int sbsize;
unsigned long long dsize;
if (!get_dev_size(fd, NULL, &dsize))
return 1;
dsize >>= 9;
if (dsize < 24)
return 2;
/*
* Calculate the position of the superblock.
* It is always aligned to a 4K boundary and
* depending on minor_version, it can be:
* 0: At least 8K, but less than 12K, from end of device
* 1: At start of device
* 2: 4K from start of device.
*/
switch(st->minor_version) {
case 0:
sb_offset = dsize;
sb_offset -= 8*2;
sb_offset &= ~(4*2-1);
break;
case 1:
sb_offset = 0;
break;
case 2:
sb_offset = 4*2;
break;
default:
return -EINVAL;
}
if (sb_offset != __le64_to_cpu(sb->super_offset) &&
0 != __le64_to_cpu(sb->super_offset)
) {
fprintf(stderr, Name ": internal error - sb_offset is wrong\n");
abort();
}
if (lseek64(fd, sb_offset << 9, 0)< 0LL)
return 3;
sbsize = sizeof(*sb) + 2 * __le32_to_cpu(sb->max_dev);
sbsize = (sbsize+511)&(~511UL);
if (awrite(fd, sb, sbsize) != sbsize)
return 4;
if (sb->feature_map & __cpu_to_le32(MD_FEATURE_BITMAP_OFFSET)) {
struct bitmap_super_s *bm = (struct bitmap_super_s*)
(((char*)sb)+1024);
if (__le32_to_cpu(bm->magic) == BITMAP_MAGIC) {
locate_bitmap1(st, fd);
if (awrite(fd, bm, sizeof(*bm)) !=
sizeof(*bm))
return 5;
}
}
fsync(fd);
return 0;
}
static int load_super1(struct supertype *st, int fd, char *devname);
static unsigned long choose_bm_space(unsigned long devsize)
{
/* if the device is bigger than 8Gig, save 64k for bitmap usage,
* if bigger than 200Gig, save 128k
* NOTE: result must be multiple of 4K else bad things happen
* on 4K-sector devices.
*/
if (devsize < 64*2) return 0;
if (devsize - 64*2 >= 200*1024*1024*2)
return 128*2;
if (devsize - 4*2 > 8*1024*1024*2)
return 64*2;
return 4*2;
}
static void free_super1(struct supertype *st);
#ifndef MDASSEMBLE
static int write_init_super1(struct supertype *st)
{
struct mdp_superblock_1 *sb = st->sb;
struct supertype *refst;
int rfd;
int rv = 0;
unsigned long long bm_space;
unsigned long long reserved;
struct devinfo *di;
unsigned long long dsize, array_size;
unsigned long long sb_offset;
for (di = st->info; di && ! rv ; di = di->next) {
if (di->disk.state == 1)
continue;
if (di->fd < 0)
continue;
while (Kill(di->devname, NULL, 0, 1, 1) == 0)
;
sb->dev_number = __cpu_to_le32(di->disk.number);
if (di->disk.state & (1<<MD_DISK_WRITEMOSTLY))
sb->devflags |= __cpu_to_le32(WriteMostly1);
else
sb->devflags &= ~(__cpu_to_le32(WriteMostly1));
if ((rfd = open("/dev/urandom", O_RDONLY)) < 0 ||
read(rfd, sb->device_uuid, 16) != 16) {
__u32 r[4] = {random(), random(), random(), random()};
memcpy(sb->device_uuid, r, 16);
}
if (rfd >= 0)
close(rfd);
sb->events = 0;
refst = dup_super(st);
if (load_super1(refst, di->fd, NULL)==0) {
struct mdp_superblock_1 *refsb = refst->sb;
memcpy(sb->device_uuid, refsb->device_uuid, 16);
if (memcmp(sb->set_uuid, refsb->set_uuid, 16)==0) {
/* same array, so preserve events and
* dev_number */
sb->events = refsb->events;
/* bugs in 2.6.17 and earlier mean the
* dev_number chosen in Manage must be preserved
*/
if (get_linux_version() >= 2006018)
sb->dev_number = refsb->dev_number;
}
free_super1(refst);
}
free(refst);
if (!get_dev_size(di->fd, NULL, &dsize))
return 1;
dsize >>= 9;
if (dsize < 24) {
close(di->fd);
return 2;
}
/*
* Calculate the position of the superblock.
* It is always aligned to a 4K boundary and
* depending on minor_version, it can be:
* 0: At least 8K, but less than 12K, from end of device
* 1: At start of device
* 2: 4K from start of device.
* Depending on the array size, we might leave extra space
* for a bitmap.
*/
array_size = __le64_to_cpu(sb->size);
/* work out how much space we left for a bitmap */
bm_space = choose_bm_space(array_size);
switch(st->minor_version) {
case 0:
sb_offset = dsize;
sb_offset -= 8*2;
sb_offset &= ~(4*2-1);
sb->super_offset = __cpu_to_le64(sb_offset);
sb->data_offset = __cpu_to_le64(0);
if (sb_offset < array_size + bm_space)
bm_space = sb_offset - array_size;
sb->data_size = __cpu_to_le64(sb_offset - bm_space);
break;
case 1:
sb->super_offset = __cpu_to_le64(0);
reserved = bm_space + 4*2;
/* Try for multiple of 1Meg so it is nicely aligned */
#define ONE_MEG (2*1024)
reserved = ((reserved + ONE_MEG-1)/ONE_MEG) * ONE_MEG;
if (reserved + __le64_to_cpu(sb->size) > dsize)
reserved = dsize - __le64_to_cpu(sb->size);
/* force 4K alignment */
reserved &= ~7ULL;
sb->data_offset = __cpu_to_le64(reserved);
sb->data_size = __cpu_to_le64(dsize - reserved);
break;
case 2:
sb_offset = 4*2;
sb->super_offset = __cpu_to_le64(4*2);
if (4*2 + 4*2 + bm_space + __le64_to_cpu(sb->size)
> dsize)
bm_space = dsize - __le64_to_cpu(sb->size)
- 4*2 - 4*2;
reserved = bm_space + 4*2 + 4*2;
/* Try for multiple of 1Meg so it is nicely aligned */
#define ONE_MEG (2*1024)
reserved = ((reserved + ONE_MEG-1)/ONE_MEG) * ONE_MEG;
if (reserved + __le64_to_cpu(sb->size) > dsize)
reserved = dsize - __le64_to_cpu(sb->size);
/* force 4K alignment */
reserved &= ~7ULL;
sb->data_offset = __cpu_to_le64(reserved);
sb->data_size = __cpu_to_le64(dsize - reserved);
break;
default:
return -EINVAL;
}
sb->sb_csum = calc_sb_1_csum(sb);
rv = store_super1(st, di->fd);
if (rv)
fprintf(stderr,
Name ": failed to write superblock to %s\n",
di->devname);
if (rv == 0 && (__le32_to_cpu(sb->feature_map) & 1))
rv = st->ss->write_bitmap(st, di->fd);
close(di->fd);
di->fd = -1;
}
return rv;
}
#endif
static int compare_super1(struct supertype *st, struct supertype *tst)
{
/*
* return:
* 0 same, or first was empty, and second was copied
* 1 second had wrong number
* 2 wrong uuid
* 3 wrong other info
*/
struct mdp_superblock_1 *first = st->sb;
struct mdp_superblock_1 *second = tst->sb;
if (second->magic != __cpu_to_le32(MD_SB_MAGIC))
return 1;
if (second->major_version != __cpu_to_le32(1))
return 1;
if (!first) {
if (posix_memalign((void**)&first, 512,
1024 + 512 +
sizeof(struct misc_dev_info)) != 0) {
fprintf(stderr, Name
": %s could not allocate superblock\n", __func__);
return 1;
}
memcpy(first, second, 1024 + 512 +
sizeof(struct misc_dev_info));
st->sb = first;
return 0;
}
if (memcmp(first->set_uuid, second->set_uuid, 16)!= 0)
return 2;
if (first->ctime != second->ctime ||
first->level != second->level ||
first->layout != second->layout ||
first->size != second->size ||
first->chunksize != second->chunksize ||
first->raid_disks != second->raid_disks)
return 3;
return 0;
}
static int load_super1(struct supertype *st, int fd, char *devname)
{
unsigned long long dsize;
unsigned long long sb_offset;
struct mdp_superblock_1 *super;
int uuid[4];
struct bitmap_super_s *bsb;
struct misc_dev_info *misc;
free_super1(st);
if (st->ss == NULL || st->minor_version == -1) {
int bestvers = -1;
struct supertype tst;
__u64 bestctime = 0;
/* guess... choose latest ctime */
memset(&tst, 0, sizeof(tst));
tst.ss = &super1;
for (tst.minor_version = 0; tst.minor_version <= 2 ; tst.minor_version++) {
switch(load_super1(&tst, fd, devname)) {
case 0: super = tst.sb;
if (bestvers == -1 ||
bestctime < __le64_to_cpu(super->ctime)) {
bestvers = tst.minor_version;
bestctime = __le64_to_cpu(super->ctime);
}
free(super);
tst.sb = NULL;
break;
case 1: return 1; /*bad device */
case 2: break; /* bad, try next */
}
}
if (bestvers != -1) {
int rv;
tst.minor_version = bestvers;
tst.ss = &super1;
tst.max_devs = 384;
rv = load_super1(&tst, fd, devname);
if (rv == 0)
*st = tst;
return rv;
}
return 2;
}
if (!get_dev_size(fd, devname, &dsize))
return 1;
dsize >>= 9;
if (dsize < 24) {
if (devname)
fprintf(stderr, Name ": %s is too small for md: size is %llu sectors.\n",
devname, dsize);
return 1;
}
/*
* Calculate the position of the superblock.
* It is always aligned to a 4K boundary and
* depending on minor_version, it can be:
* 0: At least 8K, but less than 12K, from end of device
* 1: At start of device
* 2: 4K from start of device.
*/
switch(st->minor_version) {
case 0:
sb_offset = dsize;
sb_offset -= 8*2;
sb_offset &= ~(4*2-1);
break;
case 1:
sb_offset = 0;
break;
case 2:
sb_offset = 4*2;
break;
default:
return -EINVAL;
}
ioctl(fd, BLKFLSBUF, 0); /* make sure we read current data */
if (lseek64(fd, sb_offset << 9, 0)< 0LL) {
if (devname)
fprintf(stderr, Name ": Cannot seek to superblock on %s: %s\n",
devname, strerror(errno));
return 1;
}
if (posix_memalign((void**)&super, 512,
1024 + 512 +
sizeof(struct misc_dev_info)) != 0) {
fprintf(stderr, Name ": %s could not allocate superblock\n",
__func__);
return 1;
}
if (aread(fd, super, 1024) != 1024) {
if (devname)
fprintf(stderr, Name ": Cannot read superblock on %s\n",
devname);
free(super);
return 1;
}
if (__le32_to_cpu(super->magic) != MD_SB_MAGIC) {
if (devname)
fprintf(stderr, Name ": No super block found on %s (Expected magic %08x, got %08x)\n",
devname, MD_SB_MAGIC, __le32_to_cpu(super->magic));
free(super);
return 2;
}
if (__le32_to_cpu(super->major_version) != 1) {
if (devname)
fprintf(stderr, Name ": Cannot interpret superblock on %s - version is %d\n",
devname, __le32_to_cpu(super->major_version));
free(super);
return 2;
}
if (__le64_to_cpu(super->super_offset) != sb_offset) {
if (devname)
fprintf(stderr, Name ": No superblock found on %s (super_offset is wrong)\n",
devname);
free(super);
return 2;
}
st->sb = super;
bsb = (struct bitmap_super_s *)(((char*)super)+1024);
misc = (struct misc_dev_info*) (((char*)super)+1024+512);
misc->device_size = dsize;
/* Now check on the bitmap superblock */
if ((__le32_to_cpu(super->feature_map)&MD_FEATURE_BITMAP_OFFSET) == 0)
return 0;
/* Read the bitmap superblock and make sure it looks
* valid. If it doesn't clear the bit. An --assemble --force
* should get that written out.
*/
locate_bitmap1(st, fd);
if (aread(fd, ((char*)super)+1024, 512)
!= 512)
goto no_bitmap;
uuid_from_super1(st, uuid);
if (__le32_to_cpu(bsb->magic) != BITMAP_MAGIC ||
memcmp(bsb->uuid, uuid, 16) != 0)
goto no_bitmap;
return 0;
no_bitmap:
super->feature_map = __cpu_to_le32(__le32_to_cpu(super->feature_map) & ~1);
return 0;
}
static struct supertype *match_metadata_desc1(char *arg)
{
struct supertype *st = malloc(sizeof(*st));
if (!st) return st;
memset(st, 0, sizeof(*st));
st->container_dev = NoMdDev;
st->ss = &super1;
st->max_devs = 384;
st->sb = NULL;
/* leading zeros can be safely ignored. --detail generates them. */
while (*arg == '0')
arg++;
if (strcmp(arg, "1.0") == 0 ||
strcmp(arg, "1.00") == 0) {
st->minor_version = 0;
return st;
}
if (strcmp(arg, "1.1") == 0 ||
strcmp(arg, "1.01") == 0
) {
st->minor_version = 1;
return st;
}
if (strcmp(arg, "1.2") == 0 ||
#ifndef DEFAULT_OLD_METADATA /* ifdef in super0.c */
strcmp(arg, "default") == 0 ||
#endif /* DEFAULT_OLD_METADATA */
strcmp(arg, "1.02") == 0) {
st->minor_version = 2;
return st;
}
if (strcmp(arg, "1") == 0 ||
strcmp(arg, "default") == 0) {
st->minor_version = -1;
return st;
}
free(st);
return NULL;
}
/* find available size on device with this devsize, using
* superblock type st, and reserving 'reserve' sectors for
* a possible bitmap
*/
static __u64 avail_size1(struct supertype *st, __u64 devsize)
{
struct mdp_superblock_1 *super = st->sb;
if (devsize < 24)
return 0;
if (super == NULL)
/* creating: allow suitable space for bitmap */
devsize -= choose_bm_space(devsize);
#ifndef MDASSEMBLE
else if (__le32_to_cpu(super->feature_map)&MD_FEATURE_BITMAP_OFFSET) {
/* hot-add. allow for actual size of bitmap */
struct bitmap_super_s *bsb;
bsb = (struct bitmap_super_s *)(((char*)super)+1024);
devsize -= bitmap_sectors(bsb);
}
#endif
if (st->minor_version < 0)
/* not specified, so time to set default */
st->minor_version = 2;
if (super == NULL && st->minor_version > 0) {
/* haven't committed to a size yet, so allow some
* slack for alignment of data_offset.
* We haven't access to device details so allow
* 1 Meg if bigger than 1Gig
*/
if (devsize > 1024*1024*2)
devsize -= 1024*2;
}
switch(st->minor_version) {
case 0:
/* at end */
return ((devsize - 8*2 ) & ~(4*2-1));
case 1:
/* at start, 4K for superblock and possible bitmap */
return devsize - 4*2;
case 2:
/* 4k from start, 4K for superblock and possible bitmap */
return devsize - (4+4)*2;
}
return 0;
}
static int
add_internal_bitmap1(struct supertype *st,
int *chunkp, int delay, int write_behind,
unsigned long long size,
int may_change, int major)
{
/*
* If not may_change, then this is a 'Grow', and the bitmap
* must fit after the superblock.
* If may_change, then this is create, and we can put the bitmap
* before the superblock if we like, or may move the start.
* If !may_change, the bitmap MUST live at offset of 1K, until
* we get a sysfs interface.
*
* size is in sectors, chunk is in bytes !!!
*/
unsigned long long bits;
unsigned long long max_bits;
unsigned long long min_chunk;
long offset;
unsigned long long chunk = *chunkp;
int room = 0;
struct mdp_superblock_1 *sb = st->sb;
bitmap_super_t *bms = (bitmap_super_t*)(((char*)sb) + 1024);
int uuid[4];
switch(st->minor_version) {
case 0:
/* either 3K after the superblock (when hot-add),
* or some amount of space before.
*/
if (may_change) {
/* We are creating array, so we *know* how much room has
* been left.
*/
offset = 0;
room = choose_bm_space(__le64_to_cpu(sb->size));
} else {
room = __le64_to_cpu(sb->super_offset)
- __le64_to_cpu(sb->data_offset)
- __le64_to_cpu(sb->data_size);
/* remove '1 ||' when we can set offset via sysfs */
if (1 || (room < 3*2 &&
__le32_to_cpu(sb->max_dev) <= 384)) {
room = 3*2;
offset = 1*2;
} else {
offset = 0; /* means movable offset */
}
}
break;
case 1:
case 2: /* between superblock and data */
if (may_change) {
offset = 4*2;
room = choose_bm_space(__le64_to_cpu(sb->size));
} else {
room = __le64_to_cpu(sb->data_offset)
- __le64_to_cpu(sb->super_offset);
if (1 || __le32_to_cpu(sb->max_dev) <= 384) {
room -= 2;
offset = 2;
} else {
room -= 4*2;
offset = 4*2;
}
}
break;
default:
return 0;
}
if (chunk == UnSet && room > 128*2)
/* Limit to 128K of bitmap when chunk size not requested */
room = 128*2;
max_bits = (room * 512 - sizeof(bitmap_super_t)) * 8;
min_chunk = 4096; /* sub-page chunks don't work yet.. */
bits = (size*512)/min_chunk +1;
while (bits > max_bits) {
min_chunk *= 2;
bits = (bits+1)/2;
}
if (chunk == UnSet) {
/* For practical purpose, 64Meg is a good
* default chunk size for internal bitmaps.
*/
chunk = min_chunk;
if (chunk < 64*1024*1024)
chunk = 64*1024*1024;
} else if (chunk < min_chunk)
return 0; /* chunk size too small */
if (chunk == 0) /* rounding problem */
return 0;
if (offset == 0) {
/* start bitmap on a 4K boundary with enough space for
* the bitmap
*/
bits = (size*512) / chunk + 1;
room = ((bits+7)/8 + sizeof(bitmap_super_t) +4095)/4096;
room *= 8; /* convert 4K blocks to sectors */
offset = -room;
}
sb->bitmap_offset = __cpu_to_le32(offset);
sb->feature_map = __cpu_to_le32(__le32_to_cpu(sb->feature_map) | 1);
memset(bms, 0, sizeof(*bms));
bms->magic = __cpu_to_le32(BITMAP_MAGIC);
bms->version = __cpu_to_le32(major);
uuid_from_super1(st, uuid);
memcpy(bms->uuid, uuid, 16);
bms->chunksize = __cpu_to_le32(chunk);
bms->daemon_sleep = __cpu_to_le32(delay);
bms->sync_size = __cpu_to_le64(size);
bms->write_behind = __cpu_to_le32(write_behind);
*chunkp = chunk;
return 1;
}
static void locate_bitmap1(struct supertype *st, int fd)
{
unsigned long long offset;
struct mdp_superblock_1 *sb;
int mustfree = 0;
if (!st->sb) {
if (st->ss->load_super(st, fd, NULL))
return; /* no error I hope... */
mustfree = 1;
}
sb = st->sb;
offset = __le64_to_cpu(sb->super_offset);
offset += (int32_t) __le32_to_cpu(sb->bitmap_offset);
if (mustfree)
free(sb);
lseek64(fd, offset<<9, 0);
}
static int write_bitmap1(struct supertype *st, int fd)
{
struct mdp_superblock_1 *sb = st->sb;
bitmap_super_t *bms = (bitmap_super_t*)(((char*)sb)+1024);
int rv = 0;
int towrite, n;
char *buf = (char*)(((long)(abuf+4096))&~4095UL);
locate_bitmap1(st, fd);
memset(buf, 0xff, 4096);
memcpy(buf, ((char*)sb)+1024, sizeof(bitmap_super_t));
towrite = __le64_to_cpu(bms->sync_size) / (__le32_to_cpu(bms->chunksize)>>9);
towrite = (towrite+7) >> 3; /* bits to bytes */
towrite += sizeof(bitmap_super_t);
towrite = ROUND_UP(towrite, 512);
while (towrite > 0) {
n = towrite;
if (n > 4096)
n = 4096;
n = write(fd, buf, n);
if (n > 0)
towrite -= n;
else
break;
memset(buf, 0xff, 4096);
}
fsync(fd);
if (towrite)
rv = -2;
return rv;
}
static void free_super1(struct supertype *st)
{
if (st->sb)
free(st->sb);
while (st->info) {
struct devinfo *di = st->info;
st->info = di->next;
if (di->fd >= 0)
close(di->fd);
free(di);
}
st->sb = NULL;
}
#ifndef MDASSEMBLE
static int validate_geometry1(struct supertype *st, int level,
int layout, int raiddisks,
int *chunk, unsigned long long size,
char *subdev, unsigned long long *freesize,
int verbose)
{
unsigned long long ldsize;
int fd;
if (level == LEVEL_CONTAINER) {
if (verbose)
fprintf(stderr, Name ": 1.x metadata does not support containers\n");
return 0;
}
if (chunk && *chunk == UnSet)
*chunk = DEFAULT_CHUNK;
if (!subdev)
return 1;
fd = open(subdev, O_RDONLY|O_EXCL, 0);
if (fd < 0) {
if (verbose)
fprintf(stderr, Name ": super1.x cannot open %s: %s\n",
subdev, strerror(errno));
return 0;
}
if (!get_dev_size(fd, subdev, &ldsize)) {
close(fd);
return 0;
}
close(fd);
*freesize = avail_size1(st, ldsize >> 9);
return 1;
}
#endif /* MDASSEMBLE */
struct superswitch super1 = {
#ifndef MDASSEMBLE
.examine_super = examine_super1,
.brief_examine_super = brief_examine_super1,
.export_examine_super = export_examine_super1,
.detail_super = detail_super1,
.brief_detail_super = brief_detail_super1,
.export_detail_super = export_detail_super1,
.write_init_super = write_init_super1,
.validate_geometry = validate_geometry1,
.add_to_super = add_to_super1,
#endif
.match_home = match_home1,
.uuid_from_super = uuid_from_super1,
.getinfo_super = getinfo_super1,
.container_content = container_content1,
.update_super = update_super1,
.init_super = init_super1,
.store_super = store_super1,
.compare_super = compare_super1,
.load_super = load_super1,
.match_metadata_desc = match_metadata_desc1,
.avail_size = avail_size1,
.add_internal_bitmap = add_internal_bitmap1,
.locate_bitmap = locate_bitmap1,
.write_bitmap = write_bitmap1,
.free_super = free_super1,
#if __BYTE_ORDER == BIG_ENDIAN
.swapuuid = 0,
#else
.swapuuid = 1,
#endif
.name = "1.x",
};