mdadm/managemon.c
NeilBrown 0f99b4bd73 mdmon: when a reshape is detected, add any newly added devices to the array.
When mdadm starts a reshape, it might add some devices to the array
first.  mdmon needs to notice the reshape starting and check for any
new devices.  If there are any they need to be provided to be
monitored.

Signed-off-by: NeilBrown <neilb@suse.de>
2010-12-16 09:07:52 +11:00

803 lines
20 KiB
C

/*
* mdmon - monitor external metadata arrays
*
* Copyright (C) 2007-2009 Neil Brown <neilb@suse.de>
* Copyright (C) 2007-2009 Intel Corporation
*
* This program is free software; you can redistribute it and/or modify it
* under the terms and conditions of the GNU General Public License,
* version 2, as published by the Free Software Foundation.
*
* This program is distributed in the hope it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
* more details.
*
* You should have received a copy of the GNU General Public License along with
* this program; if not, write to the Free Software Foundation, Inc.,
* 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
*/
/*
* The management thread for monitoring active md arrays.
* This thread does things which might block such as memory
* allocation.
* In particular:
*
* - Find out about new arrays in this container.
* Allocate the data structures and open the files.
*
* For this we watch /proc/mdstat and find new arrays with
* metadata type that confirms sharing. e.g. "md4"
* When we find a new array we slip it into the list of
* arrays and signal 'monitor' by writing to a pipe.
*
* - Respond to reshape requests by allocating new data structures
* and opening new files.
*
* These come as a change to raid_disks. We allocate a new
* version of the data structures and slip it into the list.
* 'monitor' will notice and release the old version.
* Changes to level, chunksize, layout.. do not need re-allocation.
* Reductions in raid_disks don't really either, but we handle
* them the same way for consistency.
*
* - When a device is added to the container, we add it to the metadata
* as a spare.
*
* - Deal with degraded array
* We only do this when first noticing the array is degraded.
* This can be when we first see the array, when sync completes or
* when recovery completes.
*
* Check if number of failed devices suggests recovery is needed, and
* skip if not.
* Ask metadata to allocate a spare device
* Add device as not in_sync and give a role
* Update metadata.
* Open sysfs files and pass to monitor.
* Make sure that monitor Starts recovery....
*
* - Pass on metadata updates from external programs such as
* mdadm creating a new array.
*
* This is most-messy.
* It might involve adding a new array or changing the status of
* a spare, or any reconfig that the kernel doesn't get involved in.
*
* The required updates are received via a named pipe. There will
* be one named pipe for each container. Each message contains a
* sync marker: 0x5a5aa5a5, A byte count, and the message. This is
* passed to the metadata handler which will interpret and process it.
* For 'DDF' messages are internal data blocks with the leading
* 'magic number' signifying what sort of data it is.
*
*/
/*
* We select on /proc/mdstat and the named pipe.
* We create new arrays or updated version of arrays and slip
* them into the head of the list, then signal 'monitor' via a pipe write.
* 'monitor' will notice and place the old array on a return list.
* Metadata updates are placed on a queue just like they arrive
* from the named pipe.
*
* When new arrays are found based on correct metadata string, we
* need to identify them with an entry in the metadata. Maybe we require
* the metadata to be mdX/NN when NN is the index into an appropriate table.
*
*/
/*
* List of tasks:
* - Watch for spares to be added to the container, and write updated
* metadata to them.
* - Watch for new arrays using this container, confirm they match metadata
* and if so, start monitoring them
* - Watch for spares being added to monitored arrays. This shouldn't
* happen, as we should do all the adding. Just remove them.
* - Watch for change in raid-disks, chunk-size, etc. Update metadata and
* start a reshape.
*/
#ifndef _GNU_SOURCE
#define _GNU_SOURCE
#endif
#include "mdadm.h"
#include "mdmon.h"
#include <sys/syscall.h>
#include <sys/socket.h>
#include <signal.h>
static void close_aa(struct active_array *aa)
{
struct mdinfo *d;
for (d = aa->info.devs; d; d = d->next) {
close(d->recovery_fd);
close(d->state_fd);
}
close(aa->action_fd);
close(aa->info.state_fd);
close(aa->resync_start_fd);
close(aa->metadata_fd);
close(aa->sync_completed_fd);
}
static void free_aa(struct active_array *aa)
{
/* Note that this doesn't close fds if they are being used
* by a clone. ->container will be set for a clone
*/
dprintf("%s: devnum: %d\n", __func__, aa->devnum);
if (!aa->container)
close_aa(aa);
while (aa->info.devs) {
struct mdinfo *d = aa->info.devs;
aa->info.devs = d->next;
free(d);
}
free(aa);
}
static struct active_array *duplicate_aa(struct active_array *aa)
{
struct active_array *newa = malloc(sizeof(*newa));
struct mdinfo **dp1, **dp2;
*newa = *aa;
newa->next = NULL;
newa->replaces = NULL;
newa->info.next = NULL;
dp2 = &newa->info.devs;
for (dp1 = &aa->info.devs; *dp1; dp1 = &(*dp1)->next) {
struct mdinfo *d;
if ((*dp1)->state_fd < 0)
continue;
d = malloc(sizeof(*d));
*d = **dp1;
*dp2 = d;
dp2 = & d->next;
}
*dp2 = NULL;
return newa;
}
static void wakeup_monitor(void)
{
/* tgkill(getpid(), mon_tid, SIGUSR1); */
int pid = getpid();
syscall(SYS_tgkill, pid, mon_tid, SIGUSR1);
}
static void remove_old(void)
{
if (discard_this) {
discard_this->next = NULL;
free_aa(discard_this);
if (pending_discard == discard_this)
pending_discard = NULL;
discard_this = NULL;
wakeup_monitor();
}
}
static void replace_array(struct supertype *container,
struct active_array *old,
struct active_array *new)
{
/* To replace an array, we add it to the top of the list
* marked with ->replaces to point to the original.
* 'monitor' will take the original out of the list
* and put it on 'discard_this'. We take it from there
* and discard it.
*/
remove_old();
while (pending_discard) {
while (discard_this == NULL)
sleep(1);
remove_old();
}
pending_discard = old;
new->replaces = old;
new->next = container->arrays;
container->arrays = new;
wakeup_monitor();
}
struct metadata_update *update_queue = NULL;
struct metadata_update *update_queue_handled = NULL;
struct metadata_update *update_queue_pending = NULL;
static void free_updates(struct metadata_update **update)
{
while (*update) {
struct metadata_update *this = *update;
*update = this->next;
free(this->buf);
free(this->space);
free(this);
}
}
void check_update_queue(struct supertype *container)
{
free_updates(&update_queue_handled);
if (update_queue == NULL &&
update_queue_pending) {
update_queue = update_queue_pending;
update_queue_pending = NULL;
wakeup_monitor();
}
}
static void queue_metadata_update(struct metadata_update *mu)
{
struct metadata_update **qp;
qp = &update_queue_pending;
while (*qp)
qp = & ((*qp)->next);
*qp = mu;
}
static void add_disk_to_container(struct supertype *st, struct mdinfo *sd)
{
int dfd;
char nm[20];
struct supertype *st2;
struct metadata_update *update = NULL;
struct mdinfo info;
mdu_disk_info_t dk = {
.number = -1,
.major = sd->disk.major,
.minor = sd->disk.minor,
.raid_disk = -1,
.state = 0,
};
dprintf("%s: add %d:%d to container\n",
__func__, sd->disk.major, sd->disk.minor);
sd->next = st->devs;
st->devs = sd;
sprintf(nm, "%d:%d", sd->disk.major, sd->disk.minor);
dfd = dev_open(nm, O_RDWR);
if (dfd < 0)
return;
/* Check the metadata and see if it is already part of this
* array
*/
st2 = dup_super(st);
if (st2->ss->load_super(st2, dfd, NULL) == 0) {
st2->ss->getinfo_super(st, &info, NULL);
if (st->ss->compare_super(st, st2) == 0 &&
info.disk.raid_disk >= 0) {
/* Looks like a good member of array.
* Just accept it.
* mdadm will incorporate any parts into
* active arrays.
*/
st2->ss->free_super(st2);
return;
}
}
st2->ss->free_super(st2);
st->update_tail = &update;
st->ss->add_to_super(st, &dk, dfd, NULL);
st->ss->write_init_super(st);
queue_metadata_update(update);
st->update_tail = NULL;
}
/*
* Create and queue update structure about the removed disks.
* The update is prepared by super type handler and passed to the monitor
* thread.
*/
static void remove_disk_from_container(struct supertype *st, struct mdinfo *sd)
{
struct metadata_update *update = NULL;
mdu_disk_info_t dk = {
.number = -1,
.major = sd->disk.major,
.minor = sd->disk.minor,
.raid_disk = -1,
.state = 0,
};
/* nothing to do if super type handler does not support
* remove disk primitive
*/
if (!st->ss->remove_from_super)
return;
dprintf("%s: remove %d:%d from container\n",
__func__, sd->disk.major, sd->disk.minor);
st->update_tail = &update;
st->ss->remove_from_super(st, &dk);
st->ss->write_init_super(st);
queue_metadata_update(update);
st->update_tail = NULL;
}
static void manage_container(struct mdstat_ent *mdstat,
struct supertype *container)
{
/* Of interest here are:
* - if a new device has been added to the container, we
* add it to the array ignoring any metadata on it.
* - if a device has been removed from the container, we
* remove it from the device list and update the metadata.
* FIXME should we look for compatible metadata and take hints
* about spare assignment.... probably not.
*/
if (mdstat->devcnt != container->devcnt) {
struct mdinfo **cdp, *cd, *di, *mdi;
int found;
/* read /sys/block/NAME/md/dev-??/block/dev to find out
* what is there, and compare with container->info.devs
* To see what is removed and what is added.
* These need to be remove from, or added to, the array
*/
mdi = sysfs_read(-1, mdstat->devnum, GET_DEVS);
if (!mdi) {
/* invalidate the current count so we can try again */
container->devcnt = -1;
return;
}
/* check for removals */
for (cdp = &container->devs; *cdp; ) {
found = 0;
for (di = mdi->devs; di; di = di->next)
if (di->disk.major == (*cdp)->disk.major &&
di->disk.minor == (*cdp)->disk.minor) {
found = 1;
break;
}
if (!found) {
cd = *cdp;
*cdp = (*cdp)->next;
remove_disk_from_container(container, cd);
free(cd);
} else
cdp = &(*cdp)->next;
}
/* check for additions */
for (di = mdi->devs; di; di = di->next) {
for (cd = container->devs; cd; cd = cd->next)
if (di->disk.major == cd->disk.major &&
di->disk.minor == cd->disk.minor)
break;
if (!cd) {
struct mdinfo *newd = malloc(sizeof(*newd));
if (!newd) {
container->devcnt = -1;
continue;
}
*newd = *di;
add_disk_to_container(container, newd);
}
}
sysfs_free(mdi);
container->devcnt = mdstat->devcnt;
}
}
static int disk_init_and_add(struct mdinfo *disk, struct mdinfo *clone,
struct active_array *aa)
{
if (!disk || !clone)
return -1;
*disk = *clone;
disk->recovery_fd = sysfs_open(aa->devnum, disk->sys_name, "recovery_start");
disk->state_fd = sysfs_open(aa->devnum, disk->sys_name, "state");
disk->prev_state = read_dev_state(disk->state_fd);
disk->curr_state = disk->prev_state;
disk->next = aa->info.devs;
aa->info.devs = disk;
return 0;
}
static void manage_member(struct mdstat_ent *mdstat,
struct active_array *a)
{
/* Compare mdstat info with known state of member array.
* We do not need to look for device state changes here, that
* is dealt with by the monitor.
*
* If a reshape is being requested, monitor will have noticed
* that sync_action changed and will have set check_reshape.
* We just need to see if new devices have appeared. All metadata
* updates will already have been processed.
*
* We also want to handle degraded arrays here by
* trying to find and assign a spare.
* We do that whenever the monitor tells us too.
*/
char buf[64];
int frozen;
// FIXME
a->info.array.raid_disks = mdstat->raid_disks;
// MORE
/* honor 'frozen' */
if (sysfs_get_str(&a->info, NULL, "metadata_version", buf, sizeof(buf)) > 0)
frozen = buf[9] == '-';
else
frozen = 1; /* can't read metadata_version assume the worst */
if (a->check_degraded && !frozen) {
struct metadata_update *updates = NULL;
struct mdinfo *newdev = NULL;
struct active_array *newa;
struct mdinfo *d;
a->check_degraded = 0;
/* The array may not be degraded, this is just a good time
* to check.
*/
newdev = a->container->ss->activate_spare(a, &updates);
if (!newdev)
return;
newa = duplicate_aa(a);
if (!newa)
goto out;
/* Cool, we can add a device or several. */
/* Add device to array and set offset/size/slot.
* and open files for each newdev */
for (d = newdev; d ; d = d->next) {
struct mdinfo *newd;
newd = malloc(sizeof(*newd));
if (!newd)
continue;
if (sysfs_add_disk(&newa->info, d, 0) < 0) {
free(newd);
continue;
}
disk_init_and_add(newd, d, newa);
}
queue_metadata_update(updates);
updates = NULL;
replace_array(a->container, a, newa);
sysfs_set_str(&a->info, NULL, "sync_action", "recover");
out:
while (newdev) {
d = newdev->next;
free(newdev);
newdev = d;
}
free_updates(&updates);
}
if (a->check_reshape) {
/* mdadm might have added some devices to the array.
* We want to disk_init_and_add any such device to a
* duplicate_aa and replace a with that.
* mdstat doesn't have enough info so we sysfs_read
* and look for new stuff.
*/
struct mdinfo *info, *d, *d2, *newd;
struct active_array *newa = NULL;
a->check_reshape = 0;
info = sysfs_read(-1, mdstat->devnum,
GET_DEVS|GET_OFFSET|GET_SIZE|GET_STATE);
if (!info)
goto out2;
for (d = info->devs; d; d = d->next) {
if (d->disk.raid_disk < 0)
continue;
for (d2 = a->info.devs; d2; d2 = d2->next)
if (d2->disk.raid_disk ==
d->disk.raid_disk)
break;
if (d2)
/* already have this one */
continue;
if (!newa) {
newa = duplicate_aa(a);
if (!newa)
break;
}
newd = malloc(sizeof(*newd));
if (!newd)
continue;
disk_init_and_add(newd, d, newa);
}
out2:
sysfs_free(info);
if (newa)
replace_array(a->container, a, newa);
}
}
static int aa_ready(struct active_array *aa)
{
struct mdinfo *d;
int level = aa->info.array.level;
for (d = aa->info.devs; d; d = d->next)
if (d->state_fd < 0)
return 0;
if (aa->info.state_fd < 0)
return 0;
if (level > 0 && (aa->action_fd < 0 || aa->resync_start_fd < 0))
return 0;
if (!aa->container)
return 0;
return 1;
}
static void manage_new(struct mdstat_ent *mdstat,
struct supertype *container,
struct active_array *victim)
{
/* A new array has appeared in this container.
* Hopefully it is already recorded in the metadata.
* Check, then create the new array to report it to
* the monitor.
*/
struct active_array *new;
struct mdinfo *mdi, *di;
char *inst;
int i;
int failed = 0;
/* check if array is ready to be monitored */
if (!mdstat->active)
return;
mdi = sysfs_read(-1, mdstat->devnum,
GET_LEVEL|GET_CHUNK|GET_DISKS|GET_COMPONENT|
GET_DEGRADED|GET_DEVS|GET_OFFSET|GET_SIZE|GET_STATE);
new = malloc(sizeof(*new));
if (!new || !mdi) {
if (mdi)
sysfs_free(mdi);
if (new)
free(new);
return;
}
memset(new, 0, sizeof(*new));
new->devnum = mdstat->devnum;
strcpy(new->info.sys_name, devnum2devname(new->devnum));
new->prev_state = new->curr_state = new->next_state = inactive;
new->prev_action= new->curr_action= new->next_action= idle;
new->container = container;
inst = to_subarray(mdstat, container->devname);
new->info.array = mdi->array;
new->info.component_size = mdi->component_size;
for (i = 0; i < new->info.array.raid_disks; i++) {
struct mdinfo *newd = malloc(sizeof(*newd));
for (di = mdi->devs; di; di = di->next)
if (i == di->disk.raid_disk)
break;
if (disk_init_and_add(newd, di, new) != 0) {
if (newd)
free(newd);
failed++;
if (failed > new->info.array.failed_disks) {
/* we cannot properly monitor without all working disks */
new->container = NULL;
break;
}
}
}
new->action_fd = sysfs_open(new->devnum, NULL, "sync_action");
new->info.state_fd = sysfs_open(new->devnum, NULL, "array_state");
new->resync_start_fd = sysfs_open(new->devnum, NULL, "resync_start");
new->metadata_fd = sysfs_open(new->devnum, NULL, "metadata_version");
new->sync_completed_fd = sysfs_open(new->devnum, NULL, "sync_completed");
dprintf("%s: inst: %d action: %d state: %d\n", __func__, atoi(inst),
new->action_fd, new->info.state_fd);
sysfs_free(mdi);
/* if everything checks out tell the metadata handler we want to
* manage this instance
*/
if (!aa_ready(new) || container->ss->open_new(container, new, inst) < 0) {
fprintf(stderr, "mdmon: failed to monitor %s\n",
mdstat->metadata_version);
new->container = NULL;
free_aa(new);
} else {
replace_array(container, victim, new);
if (failed) {
new->check_degraded = 1;
manage_member(mdstat, new);
}
}
}
void manage(struct mdstat_ent *mdstat, struct supertype *container)
{
/* We have just read mdstat and need to compare it with
* the known active arrays.
* Arrays with the wrong metadata are ignored.
*/
for ( ; mdstat ; mdstat = mdstat->next) {
struct active_array *a;
if (mdstat->devnum == container->devnum) {
manage_container(mdstat, container);
continue;
}
if (!is_container_member(mdstat, container->devname))
/* Not for this array */
continue;
/* Looks like a member of this container */
for (a = container->arrays; a; a = a->next) {
if (mdstat->devnum == a->devnum) {
if (a->container)
manage_member(mdstat, a);
break;
}
}
if (a == NULL || !a->container)
manage_new(mdstat, container, a);
}
}
static void handle_message(struct supertype *container, struct metadata_update *msg)
{
/* queue this metadata update through to the monitor */
struct metadata_update *mu;
if (msg->len <= 0)
while (update_queue_pending || update_queue) {
check_update_queue(container);
usleep(15*1000);
}
if (msg->len == 0) { /* ping_monitor */
int cnt;
cnt = monitor_loop_cnt;
if (cnt & 1)
cnt += 2; /* wait until next pselect */
else
cnt += 3; /* wait for 2 pselects */
wakeup_monitor();
while (monitor_loop_cnt - cnt < 0)
usleep(10 * 1000);
} else if (msg->len == -1) { /* ping_manager */
struct mdstat_ent *mdstat = mdstat_read(1, 0);
manage(mdstat, container);
free_mdstat(mdstat);
} else if (!sigterm) {
mu = malloc(sizeof(*mu));
mu->len = msg->len;
mu->buf = msg->buf;
msg->buf = NULL;
mu->space = NULL;
mu->next = NULL;
if (container->ss->prepare_update)
container->ss->prepare_update(container, mu);
queue_metadata_update(mu);
}
}
void read_sock(struct supertype *container)
{
int fd;
struct metadata_update msg;
int terminate = 0;
long fl;
int tmo = 3; /* 3 second timeout before hanging up the socket */
fd = accept(container->sock, NULL, NULL);
if (fd < 0)
return;
fl = fcntl(fd, F_GETFL, 0);
fl |= O_NONBLOCK;
fcntl(fd, F_SETFL, fl);
do {
msg.buf = NULL;
/* read and validate the message */
if (receive_message(fd, &msg, tmo) == 0) {
handle_message(container, &msg);
if (msg.len == 0) {
/* ping reply with version */
msg.buf = Version;
msg.len = strlen(Version) + 1;
if (send_message(fd, &msg, tmo) < 0)
terminate = 1;
} else if (ack(fd, tmo) < 0)
terminate = 1;
} else
terminate = 1;
} while (!terminate);
close(fd);
}
int exit_now = 0;
int manager_ready = 0;
void do_manager(struct supertype *container)
{
struct mdstat_ent *mdstat;
sigset_t set;
sigprocmask(SIG_UNBLOCK, NULL, &set);
sigdelset(&set, SIGUSR1);
sigdelset(&set, SIGTERM);
do {
if (exit_now)
exit(0);
/* Can only 'manage' things if 'monitor' is not making
* structural changes to metadata, so need to check
* update_queue
*/
if (update_queue == NULL) {
mdstat = mdstat_read(1, 0);
manage(mdstat, container);
read_sock(container);
free_mdstat(mdstat);
}
remove_old();
check_update_queue(container);
manager_ready = 1;
if (sigterm)
wakeup_monitor();
if (update_queue == NULL)
mdstat_wait_fd(container->sock, &set);
else
/* If an update is happening, just wait for signal */
pselect(0, NULL, NULL, NULL, NULL, &set);
} while(1);
}