kernel/page.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260
// SPDX-License-Identifier: GPL-2.0
//! Kernel page allocation and management.
use crate::{
alloc::{AllocError, Flags},
bindings,
error::code::*,
error::Result,
uaccess::UserSliceReader,
};
use core::ptr::{self, NonNull};
/// A bitwise shift for the page size.
pub const PAGE_SHIFT: usize = bindings::PAGE_SHIFT as usize;
/// The number of bytes in a page.
pub const PAGE_SIZE: usize = bindings::PAGE_SIZE;
/// A bitmask that gives the page containing a given address.
pub const PAGE_MASK: usize = !(PAGE_SIZE - 1);
/// Round up the given number to the next multiple of [`PAGE_SIZE`].
///
/// It is incorrect to pass an address where the next multiple of [`PAGE_SIZE`] doesn't fit in a
/// [`usize`].
pub const fn page_align(addr: usize) -> usize {
// Parentheses around `PAGE_SIZE - 1` to avoid triggering overflow sanitizers in the wrong
// cases.
(addr + (PAGE_SIZE - 1)) & PAGE_MASK
}
/// A pointer to a page that owns the page allocation.
///
/// # Invariants
///
/// The pointer is valid, and has ownership over the page.
pub struct Page {
page: NonNull<bindings::page>,
}
// SAFETY: Pages have no logic that relies on them staying on a given thread, so moving them across
// threads is safe.
unsafe impl Send for Page {}
// SAFETY: Pages have no logic that relies on them not being accessed concurrently, so accessing
// them concurrently is safe.
unsafe impl Sync for Page {}
impl Page {
/// Allocates a new page.
///
/// # Examples
///
/// Allocate memory for a page.
///
/// ```
/// use kernel::page::Page;
///
/// # fn dox() -> Result<(), kernel::alloc::AllocError> {
/// let page = Page::alloc_page(GFP_KERNEL)?;
/// # Ok(()) }
/// ```
///
/// Allocate memory for a page and zero its contents.
///
/// ```
/// use kernel::page::Page;
///
/// # fn dox() -> Result<(), kernel::alloc::AllocError> {
/// let page = Page::alloc_page(GFP_KERNEL | __GFP_ZERO)?;
/// # Ok(()) }
/// ```
pub fn alloc_page(flags: Flags) -> Result<Self, AllocError> {
// SAFETY: Depending on the value of `gfp_flags`, this call may sleep. Other than that, it
// is always safe to call this method.
let page = unsafe { bindings::alloc_pages(flags.as_raw(), 0) };
let page = NonNull::new(page).ok_or(AllocError)?;
// INVARIANT: We just successfully allocated a page, so we now have ownership of the newly
// allocated page. We transfer that ownership to the new `Page` object.
Ok(Self { page })
}
/// Returns a raw pointer to the page.
pub fn as_ptr(&self) -> *mut bindings::page {
self.page.as_ptr()
}
/// Runs a piece of code with this page mapped to an address.
///
/// The page is unmapped when this call returns.
///
/// # Using the raw pointer
///
/// It is up to the caller to use the provided raw pointer correctly. The pointer is valid for
/// `PAGE_SIZE` bytes and for the duration in which the closure is called. The pointer might
/// only be mapped on the current thread, and when that is the case, dereferencing it on other
/// threads is UB. Other than that, the usual rules for dereferencing a raw pointer apply: don't
/// cause data races, the memory may be uninitialized, and so on.
///
/// If multiple threads map the same page at the same time, then they may reference with
/// different addresses. However, even if the addresses are different, the underlying memory is
/// still the same for these purposes (e.g., it's still a data race if they both write to the
/// same underlying byte at the same time).
fn with_page_mapped<T>(&self, f: impl FnOnce(*mut u8) -> T) -> T {
// SAFETY: `page` is valid due to the type invariants on `Page`.
let mapped_addr = unsafe { bindings::kmap_local_page(self.as_ptr()) };
let res = f(mapped_addr.cast());
// This unmaps the page mapped above.
//
// SAFETY: Since this API takes the user code as a closure, it can only be used in a manner
// where the pages are unmapped in reverse order. This is as required by `kunmap_local`.
//
// In other words, if this call to `kunmap_local` happens when a different page should be
// unmapped first, then there must necessarily be a call to `kmap_local_page` other than the
// call just above in `with_page_mapped` that made that possible. In this case, it is the
// unsafe block that wraps that other call that is incorrect.
unsafe { bindings::kunmap_local(mapped_addr) };
res
}
/// Runs a piece of code with a raw pointer to a slice of this page, with bounds checking.
///
/// If `f` is called, then it will be called with a pointer that points at `off` bytes into the
/// page, and the pointer will be valid for at least `len` bytes. The pointer is only valid on
/// this task, as this method uses a local mapping.
///
/// If `off` and `len` refers to a region outside of this page, then this method returns
/// [`EINVAL`] and does not call `f`.
///
/// # Using the raw pointer
///
/// It is up to the caller to use the provided raw pointer correctly. The pointer is valid for
/// `len` bytes and for the duration in which the closure is called. The pointer might only be
/// mapped on the current thread, and when that is the case, dereferencing it on other threads
/// is UB. Other than that, the usual rules for dereferencing a raw pointer apply: don't cause
/// data races, the memory may be uninitialized, and so on.
///
/// If multiple threads map the same page at the same time, then they may reference with
/// different addresses. However, even if the addresses are different, the underlying memory is
/// still the same for these purposes (e.g., it's still a data race if they both write to the
/// same underlying byte at the same time).
fn with_pointer_into_page<T>(
&self,
off: usize,
len: usize,
f: impl FnOnce(*mut u8) -> Result<T>,
) -> Result<T> {
let bounds_ok = off <= PAGE_SIZE && len <= PAGE_SIZE && (off + len) <= PAGE_SIZE;
if bounds_ok {
self.with_page_mapped(move |page_addr| {
// SAFETY: The `off` integer is at most `PAGE_SIZE`, so this pointer offset will
// result in a pointer that is in bounds or one off the end of the page.
f(unsafe { page_addr.add(off) })
})
} else {
Err(EINVAL)
}
}
/// Maps the page and reads from it into the given buffer.
///
/// This method will perform bounds checks on the page offset. If `offset .. offset+len` goes
/// outside of the page, then this call returns [`EINVAL`].
///
/// # Safety
///
/// * Callers must ensure that `dst` is valid for writing `len` bytes.
/// * Callers must ensure that this call does not race with a write to the same page that
/// overlaps with this read.
pub unsafe fn read_raw(&self, dst: *mut u8, offset: usize, len: usize) -> Result {
self.with_pointer_into_page(offset, len, move |src| {
// SAFETY: If `with_pointer_into_page` calls into this closure, then
// it has performed a bounds check and guarantees that `src` is
// valid for `len` bytes.
//
// There caller guarantees that there is no data race.
unsafe { ptr::copy_nonoverlapping(src, dst, len) };
Ok(())
})
}
/// Maps the page and writes into it from the given buffer.
///
/// This method will perform bounds checks on the page offset. If `offset .. offset+len` goes
/// outside of the page, then this call returns [`EINVAL`].
///
/// # Safety
///
/// * Callers must ensure that `src` is valid for reading `len` bytes.
/// * Callers must ensure that this call does not race with a read or write to the same page
/// that overlaps with this write.
pub unsafe fn write_raw(&self, src: *const u8, offset: usize, len: usize) -> Result {
self.with_pointer_into_page(offset, len, move |dst| {
// SAFETY: If `with_pointer_into_page` calls into this closure, then it has performed a
// bounds check and guarantees that `dst` is valid for `len` bytes.
//
// There caller guarantees that there is no data race.
unsafe { ptr::copy_nonoverlapping(src, dst, len) };
Ok(())
})
}
/// Maps the page and zeroes the given slice.
///
/// This method will perform bounds checks on the page offset. If `offset .. offset+len` goes
/// outside of the page, then this call returns [`EINVAL`].
///
/// # Safety
///
/// Callers must ensure that this call does not race with a read or write to the same page that
/// overlaps with this write.
pub unsafe fn fill_zero_raw(&self, offset: usize, len: usize) -> Result {
self.with_pointer_into_page(offset, len, move |dst| {
// SAFETY: If `with_pointer_into_page` calls into this closure, then it has performed a
// bounds check and guarantees that `dst` is valid for `len` bytes.
//
// There caller guarantees that there is no data race.
unsafe { ptr::write_bytes(dst, 0u8, len) };
Ok(())
})
}
/// Copies data from userspace into this page.
///
/// This method will perform bounds checks on the page offset. If `offset .. offset+len` goes
/// outside of the page, then this call returns [`EINVAL`].
///
/// Like the other `UserSliceReader` methods, data races are allowed on the userspace address.
/// However, they are not allowed on the page you are copying into.
///
/// # Safety
///
/// Callers must ensure that this call does not race with a read or write to the same page that
/// overlaps with this write.
pub unsafe fn copy_from_user_slice_raw(
&self,
reader: &mut UserSliceReader,
offset: usize,
len: usize,
) -> Result {
self.with_pointer_into_page(offset, len, move |dst| {
// SAFETY: If `with_pointer_into_page` calls into this closure, then it has performed a
// bounds check and guarantees that `dst` is valid for `len` bytes. Furthermore, we have
// exclusive access to the slice since the caller guarantees that there are no races.
reader.read_raw(unsafe { core::slice::from_raw_parts_mut(dst.cast(), len) })
})
}
}
impl Drop for Page {
fn drop(&mut self) {
// SAFETY: By the type invariants, we have ownership of the page and can free it.
unsafe { bindings::__free_pages(self.page.as_ptr(), 0) };
}
}