AOMedia AV1 Codec
av1_common_int.h
1/*
2 * Copyright (c) 2016, Alliance for Open Media. All rights reserved.
3 *
4 * This source code is subject to the terms of the BSD 2 Clause License and
5 * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License
6 * was not distributed with this source code in the LICENSE file, you can
7 * obtain it at www.aomedia.org/license/software. If the Alliance for Open
8 * Media Patent License 1.0 was not distributed with this source code in the
9 * PATENTS file, you can obtain it at www.aomedia.org/license/patent.
10 */
11
12#ifndef AOM_AV1_COMMON_AV1_COMMON_INT_H_
13#define AOM_AV1_COMMON_AV1_COMMON_INT_H_
14
15#include <stdbool.h>
16
17#include "config/aom_config.h"
18#include "config/av1_rtcd.h"
19
20#include "aom/internal/aom_codec_internal.h"
21#include "aom_dsp/flow_estimation/corner_detect.h"
22#include "aom_util/aom_pthread.h"
23#include "av1/common/alloccommon.h"
24#include "av1/common/av1_loopfilter.h"
25#include "av1/common/entropy.h"
26#include "av1/common/entropymode.h"
27#include "av1/common/entropymv.h"
28#include "av1/common/enums.h"
29#include "av1/common/frame_buffers.h"
30#include "av1/common/mv.h"
31#include "av1/common/quant_common.h"
33#include "av1/common/tile_common.h"
34#include "av1/common/timing.h"
35#include "aom_dsp/grain_params.h"
36#include "aom_dsp/grain_table.h"
37#include "aom_dsp/odintrin.h"
38#ifdef __cplusplus
39extern "C" {
40#endif
41
42#if defined(__clang__) && defined(__has_warning)
43#if __has_feature(cxx_attributes) && __has_warning("-Wimplicit-fallthrough")
44#define AOM_FALLTHROUGH_INTENDED [[clang::fallthrough]] // NOLINT
45#endif
46#elif defined(__GNUC__) && __GNUC__ >= 7
47#define AOM_FALLTHROUGH_INTENDED __attribute__((fallthrough)) // NOLINT
48#endif
49
50#ifndef AOM_FALLTHROUGH_INTENDED
51#define AOM_FALLTHROUGH_INTENDED \
52 do { \
53 } while (0)
54#endif
55
56#define CDEF_MAX_STRENGTHS 16
57
58/* Constant values while waiting for the sequence header */
59#define FRAME_ID_LENGTH 15
60#define DELTA_FRAME_ID_LENGTH 14
61
62#define FRAME_CONTEXTS (FRAME_BUFFERS + 1)
63// Extra frame context which is always kept at default values
64#define FRAME_CONTEXT_DEFAULTS (FRAME_CONTEXTS - 1)
65#define PRIMARY_REF_BITS 3
66#define PRIMARY_REF_NONE 7
67
68#define NUM_PING_PONG_BUFFERS 2
69
70#define MAX_NUM_TEMPORAL_LAYERS 8
71#define MAX_NUM_SPATIAL_LAYERS 4
72/* clang-format off */
73// clang-format seems to think this is a pointer dereference and not a
74// multiplication.
75#define MAX_NUM_OPERATING_POINTS \
76 (MAX_NUM_TEMPORAL_LAYERS * MAX_NUM_SPATIAL_LAYERS)
77/* clang-format on */
78
79// TODO(jingning): Turning this on to set up transform coefficient
80// processing timer.
81#define TXCOEFF_TIMER 0
82#define TXCOEFF_COST_TIMER 0
83
86enum {
87 SINGLE_REFERENCE = 0,
88 COMPOUND_REFERENCE = 1,
89 REFERENCE_MODE_SELECT = 2,
90 REFERENCE_MODES = 3,
91} UENUM1BYTE(REFERENCE_MODE);
92
93enum {
97 REFRESH_FRAME_CONTEXT_DISABLED,
102 REFRESH_FRAME_CONTEXT_BACKWARD,
103} UENUM1BYTE(REFRESH_FRAME_CONTEXT_MODE);
104
105#define MFMV_STACK_SIZE 3
106typedef struct {
107 int_mv mfmv0;
108 uint8_t ref_frame_offset;
109} TPL_MV_REF;
110
111typedef struct {
112 int_mv mv;
113 MV_REFERENCE_FRAME ref_frame;
114} MV_REF;
115
116typedef struct RefCntBuffer {
117 // For a RefCntBuffer, the following are reference-holding variables:
118 // - cm->ref_frame_map[]
119 // - cm->cur_frame
120 // - cm->scaled_ref_buf[] (encoder only)
121 // - pbi->output_frame_index[] (decoder only)
122 // With that definition, 'ref_count' is the number of reference-holding
123 // variables that are currently referencing this buffer.
124 // For example:
125 // - suppose this buffer is at index 'k' in the buffer pool, and
126 // - Total 'n' of the variables / array elements above have value 'k' (that
127 // is, they are pointing to buffer at index 'k').
128 // Then, pool->frame_bufs[k].ref_count = n.
129 int ref_count;
130
131 unsigned int order_hint;
132 unsigned int ref_order_hints[INTER_REFS_PER_FRAME];
133
134 // These variables are used only in encoder and compare the absolute
135 // display order hint to compute the relative distance and overcome
136 // the limitation of get_relative_dist() which returns incorrect
137 // distance when a very old frame is used as a reference.
138 unsigned int display_order_hint;
139 unsigned int ref_display_order_hint[INTER_REFS_PER_FRAME];
140 // Frame's level within the hierarchical structure.
141 unsigned int pyramid_level;
142 MV_REF *mvs;
143 uint8_t *seg_map;
144 struct segmentation seg;
145 int mi_rows;
146 int mi_cols;
147 // Width and height give the size of the buffer (before any upscaling, unlike
148 // the sizes that can be derived from the buf structure)
149 int width;
150 int height;
151 WarpedMotionParams global_motion[REF_FRAMES];
152 int showable_frame; // frame can be used as show existing frame in future
153 uint8_t film_grain_params_present;
154 aom_film_grain_t film_grain_params;
155 aom_codec_frame_buffer_t raw_frame_buffer;
157 int temporal_id; // Temporal layer ID of the frame
158 int spatial_id; // Spatial layer ID of the frame
159 FRAME_TYPE frame_type;
160
161 // This is only used in the encoder but needs to be indexed per ref frame
162 // so it's extremely convenient to keep it here.
163 int interp_filter_selected[SWITCHABLE];
164
165 // Inter frame reference frame delta for loop filter
166 int8_t ref_deltas[REF_FRAMES];
167
168 // 0 = ZERO_MV, MV
169 int8_t mode_deltas[MAX_MODE_LF_DELTAS];
170
171 FRAME_CONTEXT frame_context;
172} RefCntBuffer;
173
174typedef struct BufferPool {
175// Protect BufferPool from being accessed by several FrameWorkers at
176// the same time during frame parallel decode.
177// TODO(hkuang): Try to use atomic variable instead of locking the whole pool.
178// TODO(wtc): Remove this. See
179// https://chromium-review.googlesource.com/c/webm/libvpx/+/560630.
180#if CONFIG_MULTITHREAD
181 pthread_mutex_t pool_mutex;
182#endif
183
184 // Private data associated with the frame buffer callbacks.
185 void *cb_priv;
186
189
190 RefCntBuffer *frame_bufs;
191 uint8_t num_frame_bufs;
192
193 // Frame buffers allocated internally by the codec.
194 InternalFrameBufferList int_frame_buffers;
195} BufferPool;
196
200typedef struct {
202 uint16_t *colbuf[MAX_MB_PLANE];
204 uint16_t *linebuf[MAX_MB_PLANE];
206 uint16_t *srcbuf;
208 size_t allocated_colbuf_size[MAX_MB_PLANE];
210 size_t allocated_linebuf_size[MAX_MB_PLANE];
218 int cdef_strengths[CDEF_MAX_STRENGTHS];
220 int cdef_uv_strengths[CDEF_MAX_STRENGTHS];
227} CdefInfo;
228
231typedef struct {
232 int delta_q_present_flag;
233 // Resolution of delta quant
234 int delta_q_res;
235 int delta_lf_present_flag;
236 // Resolution of delta lf level
237 int delta_lf_res;
238 // This is a flag for number of deltas of loop filter level
239 // 0: use 1 delta, for y_vertical, y_horizontal, u, and v
240 // 1: use separate deltas for each filter level
241 int delta_lf_multi;
242} DeltaQInfo;
243
244typedef struct {
245 int enable_order_hint; // 0 - disable order hint, and related tools
246 int order_hint_bits_minus_1; // dist_wtd_comp, ref_frame_mvs,
247 // frame_sign_bias
248 // if 0, enable_dist_wtd_comp and
249 // enable_ref_frame_mvs must be set as 0.
250 int enable_dist_wtd_comp; // 0 - disable dist-wtd compound modes
251 // 1 - enable it
252 int enable_ref_frame_mvs; // 0 - disable ref frame mvs
253 // 1 - enable it
254} OrderHintInfo;
255
256// Sequence header structure.
257// Note: All syntax elements of sequence_header_obu that need to be
258// bit-identical across multiple sequence headers must be part of this struct,
259// so that consistency is checked by are_seq_headers_consistent() function.
260// One exception is the last member 'op_params' that is ignored by
261// are_seq_headers_consistent() function.
262typedef struct SequenceHeader {
263 int num_bits_width;
264 int num_bits_height;
265 int max_frame_width;
266 int max_frame_height;
267 // Whether current and reference frame IDs are signaled in the bitstream.
268 // Frame id numbers are additional information that do not affect the
269 // decoding process, but provide decoders with a way of detecting missing
270 // reference frames so that appropriate action can be taken.
271 uint8_t frame_id_numbers_present_flag;
272 int frame_id_length;
273 int delta_frame_id_length;
274 BLOCK_SIZE sb_size; // Size of the superblock used for this frame
275 int mib_size; // Size of the superblock in units of MI blocks
276 int mib_size_log2; // Log 2 of above.
277
278 OrderHintInfo order_hint_info;
279
280 uint8_t force_screen_content_tools; // 0 - force off
281 // 1 - force on
282 // 2 - adaptive
283 uint8_t still_picture; // Video is a single frame still picture
284 uint8_t reduced_still_picture_hdr; // Use reduced header for still picture
285 uint8_t force_integer_mv; // 0 - Don't force. MV can use subpel
286 // 1 - force to integer
287 // 2 - adaptive
288 uint8_t enable_filter_intra; // enables/disables filterintra
289 uint8_t enable_intra_edge_filter; // enables/disables edge upsampling
290 uint8_t enable_interintra_compound; // enables/disables interintra_compound
291 uint8_t enable_masked_compound; // enables/disables masked compound
292 uint8_t enable_dual_filter; // 0 - disable dual interpolation filter
293 // 1 - enable vert/horz filter selection
294 uint8_t enable_warped_motion; // 0 - disable warp for the sequence
295 // 1 - enable warp for the sequence
296 uint8_t enable_superres; // 0 - Disable superres for the sequence
297 // and no frame level superres flag
298 // 1 - Enable superres for the sequence
299 // enable per-frame superres flag
300 uint8_t enable_cdef; // To turn on/off CDEF
301 uint8_t enable_restoration; // To turn on/off loop restoration
302 BITSTREAM_PROFILE profile;
303
304 // Color config.
305 aom_bit_depth_t bit_depth; // AOM_BITS_8 in profile 0 or 1,
306 // AOM_BITS_10 or AOM_BITS_12 in profile 2 or 3.
307 uint8_t use_highbitdepth; // If true, we need to use 16bit frame buffers.
308 uint8_t monochrome; // Monochrome video
309 aom_color_primaries_t color_primaries;
310 aom_transfer_characteristics_t transfer_characteristics;
311 aom_matrix_coefficients_t matrix_coefficients;
312 int color_range;
313 int subsampling_x; // Chroma subsampling for x
314 int subsampling_y; // Chroma subsampling for y
315 aom_chroma_sample_position_t chroma_sample_position;
316 uint8_t separate_uv_delta_q;
317 uint8_t film_grain_params_present;
318
319 // Operating point info.
320 int operating_points_cnt_minus_1;
321 int operating_point_idc[MAX_NUM_OPERATING_POINTS];
322 // True if operating_point_idc[op] is not equal to 0 for any value of op from
323 // 0 to operating_points_cnt_minus_1.
324 bool has_nonzero_operating_point_idc;
325 int timing_info_present;
326 aom_timing_info_t timing_info;
327 uint8_t decoder_model_info_present_flag;
328 aom_dec_model_info_t decoder_model_info;
329 uint8_t display_model_info_present_flag;
330 AV1_LEVEL seq_level_idx[MAX_NUM_OPERATING_POINTS];
331 uint8_t tier[MAX_NUM_OPERATING_POINTS]; // seq_tier in spec. One bit: 0 or 1.
332
333 // IMPORTANT: the op_params member must be at the end of the struct so that
334 // are_seq_headers_consistent() can be implemented with a memcmp() call.
335 // TODO(urvang): We probably don't need the +1 here.
336 aom_dec_model_op_parameters_t op_params[MAX_NUM_OPERATING_POINTS + 1];
337} SequenceHeader;
338
339typedef struct {
340 int skip_mode_allowed;
341 int skip_mode_flag;
342 int ref_frame_idx_0;
343 int ref_frame_idx_1;
344} SkipModeInfo;
345
346typedef struct {
347 FRAME_TYPE frame_type;
348 REFERENCE_MODE reference_mode;
349
350 unsigned int order_hint;
351 unsigned int display_order_hint;
352 // Frame's level within the hierarchical structure.
353 unsigned int pyramid_level;
354 unsigned int frame_number;
355 SkipModeInfo skip_mode_info;
356 int refresh_frame_flags; // Which ref frames are overwritten by this frame
357 int frame_refs_short_signaling;
358} CurrentFrame;
359
430
503
519
523 int MBs;
524
535
557 BLOCK_SIZE mi_alloc_bsize;
558
575
582 TX_TYPE *tx_type_map;
583
592 void (*free_mi)(struct CommonModeInfoParams *mi_params);
597 void (*setup_mi)(struct CommonModeInfoParams *mi_params);
607 void (*set_mb_mi)(struct CommonModeInfoParams *mi_params, int width,
608 int height, BLOCK_SIZE min_partition_size);
610};
611
621
627
636
647
648 /*
649 * Note: The qindex per superblock may have a delta from the qindex obtained
650 * at frame level from parameters above, based on 'cm->delta_q_info'.
651 */
652
660 int16_t y_dequant_QTX[MAX_SEGMENTS][2];
661 int16_t u_dequant_QTX[MAX_SEGMENTS][2];
662 int16_t v_dequant_QTX[MAX_SEGMENTS][2];
672 const qm_val_t *giqmatrix[NUM_QM_LEVELS][3][TX_SIZES_ALL];
676 const qm_val_t *gqmatrix[NUM_QM_LEVELS][3][TX_SIZES_ALL];
686 const qm_val_t *y_iqmatrix[MAX_SEGMENTS][TX_SIZES_ALL];
690 const qm_val_t *u_iqmatrix[MAX_SEGMENTS][TX_SIZES_ALL];
694 const qm_val_t *v_iqmatrix[MAX_SEGMENTS][TX_SIZES_ALL];
714};
715
716typedef struct CommonContexts CommonContexts;
725 PARTITION_CONTEXT **partition;
726
735 ENTROPY_CONTEXT **entropy[MAX_MB_PLANE];
736
743 TXFM_CONTEXT **txfm;
744
752};
753
757typedef struct AV1Common {
761 CurrentFrame current_frame;
765 struct aom_internal_error_info *error;
766
782 int width;
783 int height;
815
822 uint32_t buffer_removal_times[MAX_NUM_OPERATING_POINTS + 1];
829
833 RefCntBuffer *prev_frame;
834
839 RefCntBuffer *cur_frame;
840
861 int remapped_ref_idx[REF_FRAMES];
862
868 struct scale_factors sf_identity;
869
876 struct scale_factors ref_scale_factors[REF_FRAMES];
877
885 RefCntBuffer *ref_frame_map[REF_FRAMES];
886
893
901
908
913
918
919#if CONFIG_ENTROPY_STATS
923 int coef_cdf_category;
924#endif // CONFIG_ENTROPY_STATS
925
930
934 struct segmentation seg;
935
940
945 loop_filter_info_n lf_info;
946 struct loopfilter lf;
953 RestorationInfo rst_info[MAX_MB_PLANE];
954 int32_t *rst_tmpbuf;
955 RestorationLineBuffers *rlbs;
963
967 aom_film_grain_t film_grain_params;
968
972 DeltaQInfo delta_q_info;
973
977 WarpedMotionParams global_motion[REF_FRAMES];
978
983 SequenceHeader *seq_params;
984
988 FRAME_CONTEXT *fc;
994 FRAME_CONTEXT *default_frame_context;
995
1000
1004 BufferPool *buffer_pool;
1005
1013
1019 int ref_frame_id[REF_FRAMES];
1029 TPL_MV_REF *tpl_mvs;
1038 int ref_frame_sign_bias[REF_FRAMES];
1044 int8_t ref_frame_side[REF_FRAMES];
1045
1051
1057
1058#if TXCOEFF_TIMER
1059 int64_t cum_txcoeff_timer;
1060 int64_t txcoeff_timer;
1061 int txb_count;
1062#endif // TXCOEFF_TIMER
1063
1064#if TXCOEFF_COST_TIMER
1065 int64_t cum_txcoeff_cost_timer;
1066 int64_t txcoeff_cost_timer;
1067 int64_t txcoeff_cost_count;
1068#endif // TXCOEFF_COST_TIMER
1069} AV1_COMMON;
1070
1073// TODO(hkuang): Don't need to lock the whole pool after implementing atomic
1074// frame reference count.
1075static void lock_buffer_pool(BufferPool *const pool) {
1076#if CONFIG_MULTITHREAD
1077 pthread_mutex_lock(&pool->pool_mutex);
1078#else
1079 (void)pool;
1080#endif
1081}
1082
1083static void unlock_buffer_pool(BufferPool *const pool) {
1084#if CONFIG_MULTITHREAD
1085 pthread_mutex_unlock(&pool->pool_mutex);
1086#else
1087 (void)pool;
1088#endif
1089}
1090
1091static inline YV12_BUFFER_CONFIG *get_ref_frame(AV1_COMMON *cm, int index) {
1092 if (index < 0 || index >= REF_FRAMES) return NULL;
1093 if (cm->ref_frame_map[index] == NULL) return NULL;
1094 return &cm->ref_frame_map[index]->buf;
1095}
1096
1097static inline int get_free_fb(AV1_COMMON *cm) {
1098 RefCntBuffer *const frame_bufs = cm->buffer_pool->frame_bufs;
1099 int i;
1100
1101 lock_buffer_pool(cm->buffer_pool);
1102 const int num_frame_bufs = cm->buffer_pool->num_frame_bufs;
1103 for (i = 0; i < num_frame_bufs; ++i)
1104 if (frame_bufs[i].ref_count == 0) break;
1105
1106 if (i != num_frame_bufs) {
1107 if (frame_bufs[i].buf.use_external_reference_buffers) {
1108 // If this frame buffer's y_buffer, u_buffer, and v_buffer point to the
1109 // external reference buffers. Restore the buffer pointers to point to the
1110 // internally allocated memory.
1111 YV12_BUFFER_CONFIG *ybf = &frame_bufs[i].buf;
1112 ybf->y_buffer = ybf->store_buf_adr[0];
1113 ybf->u_buffer = ybf->store_buf_adr[1];
1114 ybf->v_buffer = ybf->store_buf_adr[2];
1115 ybf->use_external_reference_buffers = 0;
1116 }
1117
1118 frame_bufs[i].ref_count = 1;
1119 } else {
1120 // We should never run out of free buffers. If this assertion fails, there
1121 // is a reference leak.
1122 assert(0 && "Ran out of free frame buffers. Likely a reference leak.");
1123 // Reset i to be INVALID_IDX to indicate no free buffer found.
1124 i = INVALID_IDX;
1125 }
1126
1127 unlock_buffer_pool(cm->buffer_pool);
1128 return i;
1129}
1130
1131static inline RefCntBuffer *assign_cur_frame_new_fb(AV1_COMMON *const cm) {
1132 // Release the previously-used frame-buffer
1133 if (cm->cur_frame != NULL) {
1134 --cm->cur_frame->ref_count;
1135 cm->cur_frame = NULL;
1136 }
1137
1138 // Assign a new framebuffer
1139 const int new_fb_idx = get_free_fb(cm);
1140 if (new_fb_idx == INVALID_IDX) return NULL;
1141
1142 cm->cur_frame = &cm->buffer_pool->frame_bufs[new_fb_idx];
1143#if CONFIG_AV1_ENCODER && !CONFIG_REALTIME_ONLY
1144 aom_invalidate_pyramid(cm->cur_frame->buf.y_pyramid);
1145 av1_invalidate_corner_list(cm->cur_frame->buf.corners);
1146#endif // CONFIG_AV1_ENCODER && !CONFIG_REALTIME_ONLY
1147 av1_zero(cm->cur_frame->interp_filter_selected);
1148 return cm->cur_frame;
1149}
1150
1151// Modify 'lhs_ptr' to reference the buffer at 'rhs_ptr', and update the ref
1152// counts accordingly.
1153static inline void assign_frame_buffer_p(RefCntBuffer **lhs_ptr,
1154 RefCntBuffer *rhs_ptr) {
1155 RefCntBuffer *const old_ptr = *lhs_ptr;
1156 if (old_ptr != NULL) {
1157 assert(old_ptr->ref_count > 0);
1158 // One less reference to the buffer at 'old_ptr', so decrease ref count.
1159 --old_ptr->ref_count;
1160 }
1161
1162 *lhs_ptr = rhs_ptr;
1163 // One more reference to the buffer at 'rhs_ptr', so increase ref count.
1164 ++rhs_ptr->ref_count;
1165}
1166
1167static inline int frame_is_intra_only(const AV1_COMMON *const cm) {
1168 return cm->current_frame.frame_type == KEY_FRAME ||
1169 cm->current_frame.frame_type == INTRA_ONLY_FRAME;
1170}
1171
1172static inline int frame_is_sframe(const AV1_COMMON *cm) {
1173 return cm->current_frame.frame_type == S_FRAME;
1174}
1175
1176// These functions take a reference frame label between LAST_FRAME and
1177// EXTREF_FRAME inclusive. Note that this is different to the indexing
1178// previously used by the frame_refs[] array.
1179static inline int get_ref_frame_map_idx(const AV1_COMMON *const cm,
1180 const MV_REFERENCE_FRAME ref_frame) {
1181 return (ref_frame >= LAST_FRAME && ref_frame <= EXTREF_FRAME)
1182 ? cm->remapped_ref_idx[ref_frame - LAST_FRAME]
1183 : INVALID_IDX;
1184}
1185
1186static inline RefCntBuffer *get_ref_frame_buf(
1187 const AV1_COMMON *const cm, const MV_REFERENCE_FRAME ref_frame) {
1188 const int map_idx = get_ref_frame_map_idx(cm, ref_frame);
1189 return (map_idx != INVALID_IDX) ? cm->ref_frame_map[map_idx] : NULL;
1190}
1191
1192// Both const and non-const versions of this function are provided so that it
1193// can be used with a const AV1_COMMON if needed.
1194static inline const struct scale_factors *get_ref_scale_factors_const(
1195 const AV1_COMMON *const cm, const MV_REFERENCE_FRAME ref_frame) {
1196 const int map_idx = get_ref_frame_map_idx(cm, ref_frame);
1197 return (map_idx != INVALID_IDX) ? &cm->ref_scale_factors[map_idx] : NULL;
1198}
1199
1200static inline struct scale_factors *get_ref_scale_factors(
1201 AV1_COMMON *const cm, const MV_REFERENCE_FRAME ref_frame) {
1202 const int map_idx = get_ref_frame_map_idx(cm, ref_frame);
1203 return (map_idx != INVALID_IDX) ? &cm->ref_scale_factors[map_idx] : NULL;
1204}
1205
1206static inline RefCntBuffer *get_primary_ref_frame_buf(
1207 const AV1_COMMON *const cm) {
1208 const int primary_ref_frame = cm->features.primary_ref_frame;
1209 if (primary_ref_frame == PRIMARY_REF_NONE) return NULL;
1210 const int map_idx = get_ref_frame_map_idx(cm, primary_ref_frame + 1);
1211 return (map_idx != INVALID_IDX) ? cm->ref_frame_map[map_idx] : NULL;
1212}
1213
1214// Returns 1 if this frame might allow mvs from some reference frame.
1215static inline int frame_might_allow_ref_frame_mvs(const AV1_COMMON *cm) {
1216 return !cm->features.error_resilient_mode &&
1217 cm->seq_params->order_hint_info.enable_ref_frame_mvs &&
1218 cm->seq_params->order_hint_info.enable_order_hint &&
1219 !frame_is_intra_only(cm);
1220}
1221
1222// Returns 1 if this frame might use warped_motion
1223static inline int frame_might_allow_warped_motion(const AV1_COMMON *cm) {
1224 return !cm->features.error_resilient_mode && !frame_is_intra_only(cm) &&
1225 cm->seq_params->enable_warped_motion;
1226}
1227
1228static inline void ensure_mv_buffer(RefCntBuffer *buf, AV1_COMMON *cm) {
1229 const int buf_rows = buf->mi_rows;
1230 const int buf_cols = buf->mi_cols;
1231 const CommonModeInfoParams *const mi_params = &cm->mi_params;
1232
1233 if (buf->mvs == NULL || buf_rows != mi_params->mi_rows ||
1234 buf_cols != mi_params->mi_cols) {
1235 aom_free(buf->mvs);
1236 buf->mi_rows = mi_params->mi_rows;
1237 buf->mi_cols = mi_params->mi_cols;
1238 CHECK_MEM_ERROR(cm, buf->mvs,
1239 (MV_REF *)aom_calloc(((mi_params->mi_rows + 1) >> 1) *
1240 ((mi_params->mi_cols + 1) >> 1),
1241 sizeof(*buf->mvs)));
1242 aom_free(buf->seg_map);
1243 CHECK_MEM_ERROR(
1244 cm, buf->seg_map,
1245 (uint8_t *)aom_calloc(mi_params->mi_rows * mi_params->mi_cols,
1246 sizeof(*buf->seg_map)));
1247 }
1248
1249 const int mem_size =
1250 ((mi_params->mi_rows + MAX_MIB_SIZE) >> 1) * (mi_params->mi_stride >> 1);
1251
1252 if (cm->tpl_mvs == NULL || cm->tpl_mvs_mem_size < mem_size) {
1253 aom_free(cm->tpl_mvs);
1254 CHECK_MEM_ERROR(cm, cm->tpl_mvs,
1255 (TPL_MV_REF *)aom_calloc(mem_size, sizeof(*cm->tpl_mvs)));
1256 cm->tpl_mvs_mem_size = mem_size;
1257 }
1258}
1259
1260#if !CONFIG_REALTIME_ONLY || CONFIG_AV1_DECODER
1261void cfl_init(CFL_CTX *cfl, const SequenceHeader *seq_params);
1262#endif
1263
1264static inline int av1_num_planes(const AV1_COMMON *cm) {
1265 return cm->seq_params->monochrome ? 1 : MAX_MB_PLANE;
1266}
1267
1268static inline void av1_init_above_context(CommonContexts *above_contexts,
1269 int num_planes, int tile_row,
1270 MACROBLOCKD *xd) {
1271 for (int i = 0; i < num_planes; ++i) {
1272 xd->above_entropy_context[i] = above_contexts->entropy[i][tile_row];
1273 }
1274 xd->above_partition_context = above_contexts->partition[tile_row];
1275 xd->above_txfm_context = above_contexts->txfm[tile_row];
1276}
1277
1278static inline void av1_init_macroblockd(AV1_COMMON *cm, MACROBLOCKD *xd) {
1279 const int num_planes = av1_num_planes(cm);
1280 const CommonQuantParams *const quant_params = &cm->quant_params;
1281
1282 for (int i = 0; i < num_planes; ++i) {
1283 if (xd->plane[i].plane_type == PLANE_TYPE_Y) {
1284 memcpy(xd->plane[i].seg_dequant_QTX, quant_params->y_dequant_QTX,
1285 sizeof(quant_params->y_dequant_QTX));
1286 memcpy(xd->plane[i].seg_iqmatrix, quant_params->y_iqmatrix,
1287 sizeof(quant_params->y_iqmatrix));
1288
1289 } else {
1290 if (i == AOM_PLANE_U) {
1291 memcpy(xd->plane[i].seg_dequant_QTX, quant_params->u_dequant_QTX,
1292 sizeof(quant_params->u_dequant_QTX));
1293 memcpy(xd->plane[i].seg_iqmatrix, quant_params->u_iqmatrix,
1294 sizeof(quant_params->u_iqmatrix));
1295 } else {
1296 memcpy(xd->plane[i].seg_dequant_QTX, quant_params->v_dequant_QTX,
1297 sizeof(quant_params->v_dequant_QTX));
1298 memcpy(xd->plane[i].seg_iqmatrix, quant_params->v_iqmatrix,
1299 sizeof(quant_params->v_iqmatrix));
1300 }
1301 }
1302 }
1303 xd->mi_stride = cm->mi_params.mi_stride;
1304 xd->error_info = cm->error;
1305#if !CONFIG_REALTIME_ONLY || CONFIG_AV1_DECODER
1306 cfl_init(&xd->cfl, cm->seq_params);
1307#endif
1308}
1309
1310static inline void set_entropy_context(MACROBLOCKD *xd, int mi_row, int mi_col,
1311 const int num_planes) {
1312 int i;
1313 int row_offset = mi_row;
1314 int col_offset = mi_col;
1315 for (i = 0; i < num_planes; ++i) {
1316 struct macroblockd_plane *const pd = &xd->plane[i];
1317 // Offset the buffer pointer
1318 const BLOCK_SIZE bsize = xd->mi[0]->bsize;
1319 if (pd->subsampling_y && (mi_row & 0x01) && (mi_size_high[bsize] == 1))
1320 row_offset = mi_row - 1;
1321 if (pd->subsampling_x && (mi_col & 0x01) && (mi_size_wide[bsize] == 1))
1322 col_offset = mi_col - 1;
1323 int above_idx = col_offset;
1324 int left_idx = row_offset & MAX_MIB_MASK;
1325 pd->above_entropy_context =
1326 &xd->above_entropy_context[i][above_idx >> pd->subsampling_x];
1327 pd->left_entropy_context =
1328 &xd->left_entropy_context[i][left_idx >> pd->subsampling_y];
1329 }
1330}
1331
1332static inline int calc_mi_size(int len) {
1333 // len is in mi units. Align to a multiple of SBs.
1334 return ALIGN_POWER_OF_TWO(len, MAX_MIB_SIZE_LOG2);
1335}
1336
1337static inline void set_plane_n4(MACROBLOCKD *const xd, int bw, int bh,
1338 const int num_planes) {
1339 int i;
1340 for (i = 0; i < num_planes; i++) {
1341 xd->plane[i].width = (bw * MI_SIZE) >> xd->plane[i].subsampling_x;
1342 xd->plane[i].height = (bh * MI_SIZE) >> xd->plane[i].subsampling_y;
1343
1344 xd->plane[i].width = AOMMAX(xd->plane[i].width, 4);
1345 xd->plane[i].height = AOMMAX(xd->plane[i].height, 4);
1346 }
1347}
1348
1349static inline void set_mi_row_col(MACROBLOCKD *xd, const TileInfo *const tile,
1350 int mi_row, int bh, int mi_col, int bw,
1351 int mi_rows, int mi_cols) {
1352 xd->mb_to_top_edge = -GET_MV_SUBPEL(mi_row * MI_SIZE);
1353 xd->mb_to_bottom_edge = GET_MV_SUBPEL((mi_rows - bh - mi_row) * MI_SIZE);
1354 xd->mb_to_left_edge = -GET_MV_SUBPEL((mi_col * MI_SIZE));
1355 xd->mb_to_right_edge = GET_MV_SUBPEL((mi_cols - bw - mi_col) * MI_SIZE);
1356
1357 xd->mi_row = mi_row;
1358 xd->mi_col = mi_col;
1359
1360 // Are edges available for intra prediction?
1361 xd->up_available = (mi_row > tile->mi_row_start);
1362
1363 const int ss_x = xd->plane[1].subsampling_x;
1364 const int ss_y = xd->plane[1].subsampling_y;
1365
1366 xd->left_available = (mi_col > tile->mi_col_start);
1369 if (ss_x && bw < mi_size_wide[BLOCK_8X8])
1370 xd->chroma_left_available = (mi_col - 1) > tile->mi_col_start;
1371 if (ss_y && bh < mi_size_high[BLOCK_8X8])
1372 xd->chroma_up_available = (mi_row - 1) > tile->mi_row_start;
1373 if (xd->up_available) {
1374 xd->above_mbmi = xd->mi[-xd->mi_stride];
1375 } else {
1376 xd->above_mbmi = NULL;
1377 }
1378
1379 if (xd->left_available) {
1380 xd->left_mbmi = xd->mi[-1];
1381 } else {
1382 xd->left_mbmi = NULL;
1383 }
1384
1385 const int chroma_ref = ((mi_row & 0x01) || !(bh & 0x01) || !ss_y) &&
1386 ((mi_col & 0x01) || !(bw & 0x01) || !ss_x);
1387 xd->is_chroma_ref = chroma_ref;
1388 if (chroma_ref) {
1389 // To help calculate the "above" and "left" chroma blocks, note that the
1390 // current block may cover multiple luma blocks (e.g., if partitioned into
1391 // 4x4 luma blocks).
1392 // First, find the top-left-most luma block covered by this chroma block
1393 MB_MODE_INFO **base_mi =
1394 &xd->mi[-(mi_row & ss_y) * xd->mi_stride - (mi_col & ss_x)];
1395
1396 // Then, we consider the luma region covered by the left or above 4x4 chroma
1397 // prediction. We want to point to the chroma reference block in that
1398 // region, which is the bottom-right-most mi unit.
1399 // This leads to the following offsets:
1400 MB_MODE_INFO *chroma_above_mi =
1401 xd->chroma_up_available ? base_mi[-xd->mi_stride + ss_x] : NULL;
1402 xd->chroma_above_mbmi = chroma_above_mi;
1403
1404 MB_MODE_INFO *chroma_left_mi =
1405 xd->chroma_left_available ? base_mi[ss_y * xd->mi_stride - 1] : NULL;
1406 xd->chroma_left_mbmi = chroma_left_mi;
1407 }
1408
1409 xd->height = bh;
1410 xd->width = bw;
1411
1412 xd->is_last_vertical_rect = 0;
1413 if (xd->width < xd->height) {
1414 if (!((mi_col + xd->width) & (xd->height - 1))) {
1415 xd->is_last_vertical_rect = 1;
1416 }
1417 }
1418
1420 if (xd->width > xd->height)
1421 if (!(mi_row & (xd->width - 1))) xd->is_first_horizontal_rect = 1;
1422}
1423
1424static inline aom_cdf_prob *get_y_mode_cdf(FRAME_CONTEXT *tile_ctx,
1425 const MB_MODE_INFO *above_mi,
1426 const MB_MODE_INFO *left_mi) {
1427 const PREDICTION_MODE above = av1_above_block_mode(above_mi);
1428 const PREDICTION_MODE left = av1_left_block_mode(left_mi);
1429 const int above_ctx = intra_mode_context[above];
1430 const int left_ctx = intra_mode_context[left];
1431 return tile_ctx->kf_y_cdf[above_ctx][left_ctx];
1432}
1433
1434static inline void update_partition_context(MACROBLOCKD *xd, int mi_row,
1435 int mi_col, BLOCK_SIZE subsize,
1436 BLOCK_SIZE bsize) {
1437 PARTITION_CONTEXT *const above_ctx = xd->above_partition_context + mi_col;
1438 PARTITION_CONTEXT *const left_ctx =
1439 xd->left_partition_context + (mi_row & MAX_MIB_MASK);
1440
1441 const int bw = mi_size_wide[bsize];
1442 const int bh = mi_size_high[bsize];
1443 memset(above_ctx, partition_context_lookup[subsize].above, bw);
1444 memset(left_ctx, partition_context_lookup[subsize].left, bh);
1445}
1446
1447static inline int is_chroma_reference(int mi_row, int mi_col, BLOCK_SIZE bsize,
1448 int subsampling_x, int subsampling_y) {
1449 assert(bsize < BLOCK_SIZES_ALL);
1450 const int bw = mi_size_wide[bsize];
1451 const int bh = mi_size_high[bsize];
1452 int ref_pos = ((mi_row & 0x01) || !(bh & 0x01) || !subsampling_y) &&
1453 ((mi_col & 0x01) || !(bw & 0x01) || !subsampling_x);
1454 return ref_pos;
1455}
1456
1457static inline aom_cdf_prob cdf_element_prob(const aom_cdf_prob *cdf,
1458 size_t element) {
1459 assert(cdf != NULL);
1460 return (element > 0 ? cdf[element - 1] : CDF_PROB_TOP) - cdf[element];
1461}
1462
1463static inline void partition_gather_horz_alike(aom_cdf_prob *out,
1464 const aom_cdf_prob *const in,
1465 BLOCK_SIZE bsize) {
1466 (void)bsize;
1467 out[0] = CDF_PROB_TOP;
1468 out[0] -= cdf_element_prob(in, PARTITION_HORZ);
1469 out[0] -= cdf_element_prob(in, PARTITION_SPLIT);
1470 out[0] -= cdf_element_prob(in, PARTITION_HORZ_A);
1471 out[0] -= cdf_element_prob(in, PARTITION_HORZ_B);
1472 out[0] -= cdf_element_prob(in, PARTITION_VERT_A);
1473 if (bsize != BLOCK_128X128) out[0] -= cdf_element_prob(in, PARTITION_HORZ_4);
1474 out[0] = AOM_ICDF(out[0]);
1475 out[1] = AOM_ICDF(CDF_PROB_TOP);
1476}
1477
1478static inline void partition_gather_vert_alike(aom_cdf_prob *out,
1479 const aom_cdf_prob *const in,
1480 BLOCK_SIZE bsize) {
1481 (void)bsize;
1482 out[0] = CDF_PROB_TOP;
1483 out[0] -= cdf_element_prob(in, PARTITION_VERT);
1484 out[0] -= cdf_element_prob(in, PARTITION_SPLIT);
1485 out[0] -= cdf_element_prob(in, PARTITION_HORZ_A);
1486 out[0] -= cdf_element_prob(in, PARTITION_VERT_A);
1487 out[0] -= cdf_element_prob(in, PARTITION_VERT_B);
1488 if (bsize != BLOCK_128X128) out[0] -= cdf_element_prob(in, PARTITION_VERT_4);
1489 out[0] = AOM_ICDF(out[0]);
1490 out[1] = AOM_ICDF(CDF_PROB_TOP);
1491}
1492
1493static inline void update_ext_partition_context(MACROBLOCKD *xd, int mi_row,
1494 int mi_col, BLOCK_SIZE subsize,
1495 BLOCK_SIZE bsize,
1496 PARTITION_TYPE partition) {
1497 if (bsize >= BLOCK_8X8) {
1498 const int hbs = mi_size_wide[bsize] / 2;
1499 BLOCK_SIZE bsize2 = get_partition_subsize(bsize, PARTITION_SPLIT);
1500 switch (partition) {
1501 case PARTITION_SPLIT:
1502 if (bsize != BLOCK_8X8) break;
1503 AOM_FALLTHROUGH_INTENDED;
1504 case PARTITION_NONE:
1505 case PARTITION_HORZ:
1506 case PARTITION_VERT:
1507 case PARTITION_HORZ_4:
1508 case PARTITION_VERT_4:
1509 update_partition_context(xd, mi_row, mi_col, subsize, bsize);
1510 break;
1511 case PARTITION_HORZ_A:
1512 update_partition_context(xd, mi_row, mi_col, bsize2, subsize);
1513 update_partition_context(xd, mi_row + hbs, mi_col, subsize, subsize);
1514 break;
1515 case PARTITION_HORZ_B:
1516 update_partition_context(xd, mi_row, mi_col, subsize, subsize);
1517 update_partition_context(xd, mi_row + hbs, mi_col, bsize2, subsize);
1518 break;
1519 case PARTITION_VERT_A:
1520 update_partition_context(xd, mi_row, mi_col, bsize2, subsize);
1521 update_partition_context(xd, mi_row, mi_col + hbs, subsize, subsize);
1522 break;
1523 case PARTITION_VERT_B:
1524 update_partition_context(xd, mi_row, mi_col, subsize, subsize);
1525 update_partition_context(xd, mi_row, mi_col + hbs, bsize2, subsize);
1526 break;
1527 default: assert(0 && "Invalid partition type");
1528 }
1529 }
1530}
1531
1532static inline int partition_plane_context(const MACROBLOCKD *xd, int mi_row,
1533 int mi_col, BLOCK_SIZE bsize) {
1534 const PARTITION_CONTEXT *above_ctx = xd->above_partition_context + mi_col;
1535 const PARTITION_CONTEXT *left_ctx =
1536 xd->left_partition_context + (mi_row & MAX_MIB_MASK);
1537 // Minimum partition point is 8x8. Offset the bsl accordingly.
1538 const int bsl = mi_size_wide_log2[bsize] - mi_size_wide_log2[BLOCK_8X8];
1539 int above = (*above_ctx >> bsl) & 1, left = (*left_ctx >> bsl) & 1;
1540
1541 assert(mi_size_wide_log2[bsize] == mi_size_high_log2[bsize]);
1542 assert(bsl >= 0);
1543
1544 return (left * 2 + above) + bsl * PARTITION_PLOFFSET;
1545}
1546
1547// Return the number of elements in the partition CDF when
1548// partitioning the (square) block with luma block size of bsize.
1549static inline int partition_cdf_length(BLOCK_SIZE bsize) {
1550 if (bsize <= BLOCK_8X8)
1551 return PARTITION_TYPES;
1552 else if (bsize == BLOCK_128X128)
1553 return EXT_PARTITION_TYPES - 2;
1554 else
1555 return EXT_PARTITION_TYPES;
1556}
1557
1558static inline int max_block_wide(const MACROBLOCKD *xd, BLOCK_SIZE bsize,
1559 int plane) {
1560 assert(bsize < BLOCK_SIZES_ALL);
1561 int max_blocks_wide = block_size_wide[bsize];
1562
1563 if (xd->mb_to_right_edge < 0) {
1564 const struct macroblockd_plane *const pd = &xd->plane[plane];
1565 max_blocks_wide += xd->mb_to_right_edge >> (3 + pd->subsampling_x);
1566 }
1567
1568 // Scale the width in the transform block unit.
1569 return max_blocks_wide >> MI_SIZE_LOG2;
1570}
1571
1572static inline int max_block_high(const MACROBLOCKD *xd, BLOCK_SIZE bsize,
1573 int plane) {
1574 int max_blocks_high = block_size_high[bsize];
1575
1576 if (xd->mb_to_bottom_edge < 0) {
1577 const struct macroblockd_plane *const pd = &xd->plane[plane];
1578 max_blocks_high += xd->mb_to_bottom_edge >> (3 + pd->subsampling_y);
1579 }
1580
1581 // Scale the height in the transform block unit.
1582 return max_blocks_high >> MI_SIZE_LOG2;
1583}
1584
1585static inline void av1_zero_above_context(AV1_COMMON *const cm,
1586 const MACROBLOCKD *xd,
1587 int mi_col_start, int mi_col_end,
1588 const int tile_row) {
1589 const SequenceHeader *const seq_params = cm->seq_params;
1590 const int num_planes = av1_num_planes(cm);
1591 const int width = mi_col_end - mi_col_start;
1592 const int aligned_width =
1593 ALIGN_POWER_OF_TWO(width, seq_params->mib_size_log2);
1594 const int offset_y = mi_col_start;
1595 const int width_y = aligned_width;
1596 const int offset_uv = offset_y >> seq_params->subsampling_x;
1597 const int width_uv = width_y >> seq_params->subsampling_x;
1598 CommonContexts *const above_contexts = &cm->above_contexts;
1599
1600 av1_zero_array(above_contexts->entropy[0][tile_row] + offset_y, width_y);
1601 if (num_planes > 1) {
1602 if (above_contexts->entropy[1][tile_row] &&
1603 above_contexts->entropy[2][tile_row]) {
1604 av1_zero_array(above_contexts->entropy[1][tile_row] + offset_uv,
1605 width_uv);
1606 av1_zero_array(above_contexts->entropy[2][tile_row] + offset_uv,
1607 width_uv);
1608 } else {
1609 aom_internal_error(xd->error_info, AOM_CODEC_CORRUPT_FRAME,
1610 "Invalid value of planes");
1611 }
1612 }
1613
1614 av1_zero_array(above_contexts->partition[tile_row] + mi_col_start,
1615 aligned_width);
1616
1617 memset(above_contexts->txfm[tile_row] + mi_col_start,
1618 tx_size_wide[TX_SIZES_LARGEST], aligned_width * sizeof(TXFM_CONTEXT));
1619}
1620
1621static inline void av1_zero_left_context(MACROBLOCKD *const xd) {
1622 av1_zero(xd->left_entropy_context);
1623 av1_zero(xd->left_partition_context);
1624
1625 memset(xd->left_txfm_context_buffer, tx_size_high[TX_SIZES_LARGEST],
1626 sizeof(xd->left_txfm_context_buffer));
1627}
1628
1629static inline void set_txfm_ctx(TXFM_CONTEXT *txfm_ctx, uint8_t txs, int len) {
1630 int i;
1631 for (i = 0; i < len; ++i) txfm_ctx[i] = txs;
1632}
1633
1634static inline void set_txfm_ctxs(TX_SIZE tx_size, int n4_w, int n4_h, int skip,
1635 const MACROBLOCKD *xd) {
1636 uint8_t bw = tx_size_wide[tx_size];
1637 uint8_t bh = tx_size_high[tx_size];
1638
1639 if (skip) {
1640 bw = n4_w * MI_SIZE;
1641 bh = n4_h * MI_SIZE;
1642 }
1643
1644 set_txfm_ctx(xd->above_txfm_context, bw, n4_w);
1645 set_txfm_ctx(xd->left_txfm_context, bh, n4_h);
1646}
1647
1648static inline int get_mi_grid_idx(const CommonModeInfoParams *const mi_params,
1649 int mi_row, int mi_col) {
1650 return mi_row * mi_params->mi_stride + mi_col;
1651}
1652
1653static inline int get_alloc_mi_idx(const CommonModeInfoParams *const mi_params,
1654 int mi_row, int mi_col) {
1655 const int mi_alloc_size_1d = mi_size_wide[mi_params->mi_alloc_bsize];
1656 const int mi_alloc_row = mi_row / mi_alloc_size_1d;
1657 const int mi_alloc_col = mi_col / mi_alloc_size_1d;
1658
1659 return mi_alloc_row * mi_params->mi_alloc_stride + mi_alloc_col;
1660}
1661
1662// For this partition block, set pointers in mi_params->mi_grid_base and xd->mi.
1663static inline void set_mi_offsets(const CommonModeInfoParams *const mi_params,
1664 MACROBLOCKD *const xd, int mi_row,
1665 int mi_col) {
1666 // 'mi_grid_base' should point to appropriate memory in 'mi'.
1667 const int mi_grid_idx = get_mi_grid_idx(mi_params, mi_row, mi_col);
1668 const int mi_alloc_idx = get_alloc_mi_idx(mi_params, mi_row, mi_col);
1669 mi_params->mi_grid_base[mi_grid_idx] = &mi_params->mi_alloc[mi_alloc_idx];
1670 // 'xd->mi' should point to an offset in 'mi_grid_base';
1671 xd->mi = mi_params->mi_grid_base + mi_grid_idx;
1672 // 'xd->tx_type_map' should point to an offset in 'mi_params->tx_type_map'.
1673 xd->tx_type_map = mi_params->tx_type_map + mi_grid_idx;
1674 xd->tx_type_map_stride = mi_params->mi_stride;
1675}
1676
1677static inline void txfm_partition_update(TXFM_CONTEXT *above_ctx,
1678 TXFM_CONTEXT *left_ctx,
1679 TX_SIZE tx_size, TX_SIZE txb_size) {
1680 BLOCK_SIZE bsize = txsize_to_bsize[txb_size];
1681 int bh = mi_size_high[bsize];
1682 int bw = mi_size_wide[bsize];
1683 uint8_t txw = tx_size_wide[tx_size];
1684 uint8_t txh = tx_size_high[tx_size];
1685 int i;
1686 for (i = 0; i < bh; ++i) left_ctx[i] = txh;
1687 for (i = 0; i < bw; ++i) above_ctx[i] = txw;
1688}
1689
1690static inline TX_SIZE get_sqr_tx_size(int tx_dim) {
1691 switch (tx_dim) {
1692 case 128:
1693 case 64: return TX_64X64; break;
1694 case 32: return TX_32X32; break;
1695 case 16: return TX_16X16; break;
1696 case 8: return TX_8X8; break;
1697 default: return TX_4X4;
1698 }
1699}
1700
1701static inline TX_SIZE get_tx_size(int width, int height) {
1702 if (width == height) {
1703 return get_sqr_tx_size(width);
1704 }
1705 if (width < height) {
1706 if (width + width == height) {
1707 switch (width) {
1708 case 4: return TX_4X8; break;
1709 case 8: return TX_8X16; break;
1710 case 16: return TX_16X32; break;
1711 case 32: return TX_32X64; break;
1712 }
1713 } else {
1714 switch (width) {
1715 case 4: return TX_4X16; break;
1716 case 8: return TX_8X32; break;
1717 case 16: return TX_16X64; break;
1718 }
1719 }
1720 } else {
1721 if (height + height == width) {
1722 switch (height) {
1723 case 4: return TX_8X4; break;
1724 case 8: return TX_16X8; break;
1725 case 16: return TX_32X16; break;
1726 case 32: return TX_64X32; break;
1727 }
1728 } else {
1729 switch (height) {
1730 case 4: return TX_16X4; break;
1731 case 8: return TX_32X8; break;
1732 case 16: return TX_64X16; break;
1733 }
1734 }
1735 }
1736 assert(0);
1737 return TX_4X4;
1738}
1739
1740static inline int txfm_partition_context(const TXFM_CONTEXT *const above_ctx,
1741 const TXFM_CONTEXT *const left_ctx,
1742 BLOCK_SIZE bsize, TX_SIZE tx_size) {
1743 const uint8_t txw = tx_size_wide[tx_size];
1744 const uint8_t txh = tx_size_high[tx_size];
1745 const int above = *above_ctx < txw;
1746 const int left = *left_ctx < txh;
1747 int category = TXFM_PARTITION_CONTEXTS;
1748
1749 // dummy return, not used by others.
1750 if (tx_size <= TX_4X4) return 0;
1751
1752 TX_SIZE max_tx_size =
1753 get_sqr_tx_size(AOMMAX(block_size_wide[bsize], block_size_high[bsize]));
1754
1755 if (max_tx_size >= TX_8X8) {
1756 category =
1757 (txsize_sqr_up_map[tx_size] != max_tx_size && max_tx_size > TX_8X8) +
1758 (TX_SIZES - 1 - max_tx_size) * 2;
1759 }
1760 assert(category != TXFM_PARTITION_CONTEXTS);
1761 return category * 3 + above + left;
1762}
1763
1764// Compute the next partition in the direction of the sb_type stored in the mi
1765// array, starting with bsize.
1766static inline PARTITION_TYPE get_partition(const AV1_COMMON *const cm,
1767 int mi_row, int mi_col,
1768 BLOCK_SIZE bsize) {
1769 const CommonModeInfoParams *const mi_params = &cm->mi_params;
1770 if (mi_row >= mi_params->mi_rows || mi_col >= mi_params->mi_cols)
1771 return PARTITION_INVALID;
1772
1773 const int offset = mi_row * mi_params->mi_stride + mi_col;
1774 MB_MODE_INFO **mi = mi_params->mi_grid_base + offset;
1775 const BLOCK_SIZE subsize = mi[0]->bsize;
1776
1777 assert(bsize < BLOCK_SIZES_ALL);
1778
1779 if (subsize == bsize) return PARTITION_NONE;
1780
1781 const int bhigh = mi_size_high[bsize];
1782 const int bwide = mi_size_wide[bsize];
1783 const int sshigh = mi_size_high[subsize];
1784 const int sswide = mi_size_wide[subsize];
1785
1786 if (bsize > BLOCK_8X8 && mi_row + bwide / 2 < mi_params->mi_rows &&
1787 mi_col + bhigh / 2 < mi_params->mi_cols) {
1788 // In this case, the block might be using an extended partition
1789 // type.
1790 const MB_MODE_INFO *const mbmi_right = mi[bwide / 2];
1791 const MB_MODE_INFO *const mbmi_below = mi[bhigh / 2 * mi_params->mi_stride];
1792
1793 if (sswide == bwide) {
1794 // Smaller height but same width. Is PARTITION_HORZ_4, PARTITION_HORZ or
1795 // PARTITION_HORZ_B. To distinguish the latter two, check if the lower
1796 // half was split.
1797 if (sshigh * 4 == bhigh) return PARTITION_HORZ_4;
1798 assert(sshigh * 2 == bhigh);
1799
1800 if (mbmi_below->bsize == subsize)
1801 return PARTITION_HORZ;
1802 else
1803 return PARTITION_HORZ_B;
1804 } else if (sshigh == bhigh) {
1805 // Smaller width but same height. Is PARTITION_VERT_4, PARTITION_VERT or
1806 // PARTITION_VERT_B. To distinguish the latter two, check if the right
1807 // half was split.
1808 if (sswide * 4 == bwide) return PARTITION_VERT_4;
1809 assert(sswide * 2 == bwide);
1810
1811 if (mbmi_right->bsize == subsize)
1812 return PARTITION_VERT;
1813 else
1814 return PARTITION_VERT_B;
1815 } else {
1816 // Smaller width and smaller height. Might be PARTITION_SPLIT or could be
1817 // PARTITION_HORZ_A or PARTITION_VERT_A. If subsize isn't halved in both
1818 // dimensions, we immediately know this is a split (which will recurse to
1819 // get to subsize). Otherwise look down and to the right. With
1820 // PARTITION_VERT_A, the right block will have height bhigh; with
1821 // PARTITION_HORZ_A, the lower block with have width bwide. Otherwise
1822 // it's PARTITION_SPLIT.
1823 if (sswide * 2 != bwide || sshigh * 2 != bhigh) return PARTITION_SPLIT;
1824
1825 if (mi_size_wide[mbmi_below->bsize] == bwide) return PARTITION_HORZ_A;
1826 if (mi_size_high[mbmi_right->bsize] == bhigh) return PARTITION_VERT_A;
1827
1828 return PARTITION_SPLIT;
1829 }
1830 }
1831 const int vert_split = sswide < bwide;
1832 const int horz_split = sshigh < bhigh;
1833 const int split_idx = (vert_split << 1) | horz_split;
1834 assert(split_idx != 0);
1835
1836 static const PARTITION_TYPE base_partitions[4] = {
1837 PARTITION_INVALID, PARTITION_HORZ, PARTITION_VERT, PARTITION_SPLIT
1838 };
1839
1840 return base_partitions[split_idx];
1841}
1842
1843static inline void set_sb_size(SequenceHeader *const seq_params,
1844 BLOCK_SIZE sb_size) {
1845 seq_params->sb_size = sb_size;
1846 seq_params->mib_size = mi_size_wide[seq_params->sb_size];
1847 seq_params->mib_size_log2 = mi_size_wide_log2[seq_params->sb_size];
1848}
1849
1850// Returns true if the frame is fully lossless at the coded resolution.
1851// Note: If super-resolution is used, such a frame will still NOT be lossless at
1852// the upscaled resolution.
1853static inline int is_coded_lossless(const AV1_COMMON *cm,
1854 const MACROBLOCKD *xd) {
1855 int coded_lossless = 1;
1856 if (cm->seg.enabled) {
1857 for (int i = 0; i < MAX_SEGMENTS; ++i) {
1858 if (!xd->lossless[i]) {
1859 coded_lossless = 0;
1860 break;
1861 }
1862 }
1863 } else {
1864 coded_lossless = xd->lossless[0];
1865 }
1866 return coded_lossless;
1867}
1868
1869static inline int is_valid_seq_level_idx(AV1_LEVEL seq_level_idx) {
1870 return seq_level_idx == SEQ_LEVEL_MAX ||
1871 (seq_level_idx < SEQ_LEVELS &&
1872 // The following levels are currently undefined.
1873 seq_level_idx != SEQ_LEVEL_2_2 && seq_level_idx != SEQ_LEVEL_2_3 &&
1874 seq_level_idx != SEQ_LEVEL_3_2 && seq_level_idx != SEQ_LEVEL_3_3 &&
1875 seq_level_idx != SEQ_LEVEL_4_2 && seq_level_idx != SEQ_LEVEL_4_3
1876#if !CONFIG_CWG_C013
1877 && seq_level_idx != SEQ_LEVEL_7_0 && seq_level_idx != SEQ_LEVEL_7_1 &&
1878 seq_level_idx != SEQ_LEVEL_7_2 && seq_level_idx != SEQ_LEVEL_7_3 &&
1879 seq_level_idx != SEQ_LEVEL_8_0 && seq_level_idx != SEQ_LEVEL_8_1 &&
1880 seq_level_idx != SEQ_LEVEL_8_2 && seq_level_idx != SEQ_LEVEL_8_3
1881#endif
1882 );
1883}
1884
1887#ifdef __cplusplus
1888} // extern "C"
1889#endif
1890
1891#endif // AOM_AV1_COMMON_AV1_COMMON_INT_H_
int(* aom_get_frame_buffer_cb_fn_t)(void *priv, size_t min_size, aom_codec_frame_buffer_t *fb)
get frame buffer callback prototype
Definition aom_frame_buffer.h:64
int(* aom_release_frame_buffer_cb_fn_t)(void *priv, aom_codec_frame_buffer_t *fb)
release frame buffer callback prototype
Definition aom_frame_buffer.h:77
#define AOM_PLANE_U
Definition aom_image.h:211
enum aom_chroma_sample_position aom_chroma_sample_position_t
List of chroma sample positions.
enum aom_transfer_characteristics aom_transfer_characteristics_t
List of supported transfer functions.
enum aom_color_primaries aom_color_primaries_t
List of supported color primaries.
enum aom_matrix_coefficients aom_matrix_coefficients_t
List of supported matrix coefficients.
enum aom_bit_depth aom_bit_depth_t
Bit depth for codecThis enumeration determines the bit depth of the codec.
@ AOM_CODEC_CORRUPT_FRAME
The coded data for this stream is corrupt or incomplete.
Definition aom_codec.h:195
Top level common structure used by both encoder and decoder.
Definition av1_common_int.h:757
uint8_t * last_frame_seg_map
Definition av1_common_int.h:939
RestorationInfo rst_info[3]
Definition av1_common_int.h:953
WarpedMotionParams global_motion[REF_FRAMES]
Definition av1_common_int.h:977
int superres_upscaled_width
Definition av1_common_int.h:806
int8_t ref_frame_side[REF_FRAMES]
Definition av1_common_int.h:1044
struct scale_factors ref_scale_factors[REF_FRAMES]
Definition av1_common_int.h:876
RefCntBuffer * prev_frame
Definition av1_common_int.h:833
FRAME_CONTEXT * default_frame_context
Definition av1_common_int.h:994
int ref_frame_id[REF_FRAMES]
Definition av1_common_int.h:1019
int superres_upscaled_height
Definition av1_common_int.h:807
DeltaQInfo delta_q_info
Definition av1_common_int.h:972
SequenceHeader * seq_params
Definition av1_common_int.h:983
int width
Definition av1_common_int.h:782
RefCntBuffer * cur_frame
Definition av1_common_int.h:839
CdefInfo cdef_info
Definition av1_common_int.h:962
loop_filter_info_n lf_info
Definition av1_common_int.h:945
CurrentFrame current_frame
Definition av1_common_int.h:761
int remapped_ref_idx[REF_FRAMES]
Definition av1_common_int.h:861
RestorationLineBuffers * rlbs
Definition av1_common_int.h:955
aom_film_grain_t film_grain_params
Definition av1_common_int.h:967
int show_existing_frame
Definition av1_common_int.h:907
int temporal_layer_id
Definition av1_common_int.h:1050
struct aom_internal_error_info * error
Definition av1_common_int.h:765
int showable_frame
Definition av1_common_int.h:900
int tpl_mvs_mem_size
Definition av1_common_int.h:1033
uint32_t frame_presentation_time
Definition av1_common_int.h:828
uint32_t buffer_removal_times[(8 *4)+1]
Definition av1_common_int.h:822
struct loopfilter lf
Definition av1_common_int.h:946
int spatial_layer_id
Definition av1_common_int.h:1056
FeatureFlags features
Definition av1_common_int.h:912
struct scale_factors sf_identity
Definition av1_common_int.h:868
YV12_BUFFER_CONFIG rst_frame
Definition av1_common_int.h:956
CommonModeInfoParams mi_params
Definition av1_common_int.h:917
uint8_t superres_scale_denominator
Definition av1_common_int.h:814
int show_frame
Definition av1_common_int.h:892
struct segmentation seg
Definition av1_common_int.h:934
CommonQuantParams quant_params
Definition av1_common_int.h:929
TPL_MV_REF * tpl_mvs
Definition av1_common_int.h:1029
int current_frame_id
Definition av1_common_int.h:1018
int32_t * rst_tmpbuf
Definition av1_common_int.h:954
RefCntBuffer * ref_frame_map[REF_FRAMES]
Definition av1_common_int.h:885
CommonContexts above_contexts
Definition av1_common_int.h:1012
CommonTileParams tiles
Definition av1_common_int.h:999
BufferPool * buffer_pool
Definition av1_common_int.h:1004
int ref_frame_sign_bias[REF_FRAMES]
Definition av1_common_int.h:1038
FRAME_CONTEXT * fc
Definition av1_common_int.h:988
int height
Definition av1_common_int.h:783
int render_width
Definition av1_common_int.h:793
int render_height
Definition av1_common_int.h:794
Parameters related to CDEF.
Definition av1_common_int.h:200
int cdef_bits
Number of CDEF strength values in bits.
Definition av1_common_int.h:222
int allocated_mi_rows
Number of rows in the frame in 4 pixel.
Definition av1_common_int.h:224
int allocated_num_workers
Number of CDEF workers.
Definition av1_common_int.h:226
size_t allocated_srcbuf_size
CDEF intermediate buffer size.
Definition av1_common_int.h:212
int nb_cdef_strengths
Number of CDEF strength values.
Definition av1_common_int.h:216
int cdef_damping
CDEF damping factor.
Definition av1_common_int.h:214
uint16_t * srcbuf
CDEF intermediate buffer.
Definition av1_common_int.h:206
Contexts used for transmitting various symbols in the bitstream.
Definition av1_common_int.h:720
PARTITION_CONTEXT ** partition
Definition av1_common_int.h:725
int num_planes
Definition av1_common_int.h:749
ENTROPY_CONTEXT ** entropy[3]
Definition av1_common_int.h:735
int num_tile_rows
Definition av1_common_int.h:750
int num_mi_cols
Definition av1_common_int.h:751
TXFM_CONTEXT ** txfm
Definition av1_common_int.h:743
Params related to MB_MODE_INFO arrays and related info.
Definition av1_common_int.h:508
int mb_cols
Definition av1_common_int.h:518
MB_MODE_INFO * mi_alloc
Definition av1_common_int.h:542
int mi_rows
Definition av1_common_int.h:529
void(* setup_mi)(struct CommonModeInfoParams *mi_params)
Definition av1_common_int.h:597
void(* free_mi)(struct CommonModeInfoParams *mi_params)
Definition av1_common_int.h:592
int mi_cols
Definition av1_common_int.h:534
int mi_alloc_size
Definition av1_common_int.h:546
void(* set_mb_mi)(struct CommonModeInfoParams *mi_params, int width, int height, BLOCK_SIZE min_partition_size)
Definition av1_common_int.h:607
int MBs
Definition av1_common_int.h:523
TX_TYPE * tx_type_map
Definition av1_common_int.h:582
int mi_alloc_stride
Definition av1_common_int.h:550
int mi_grid_size
Definition av1_common_int.h:570
int mi_stride
Definition av1_common_int.h:574
int mb_rows
Definition av1_common_int.h:513
MB_MODE_INFO ** mi_grid_base
Definition av1_common_int.h:566
BLOCK_SIZE mi_alloc_bsize
Definition av1_common_int.h:557
Parameters related to quantization at the frame level.
Definition av1_common_int.h:616
int u_ac_delta_q
Definition av1_common_int.h:641
const qm_val_t * u_iqmatrix[8][TX_SIZES_ALL]
Definition av1_common_int.h:690
int qmatrix_level_v
Definition av1_common_int.h:712
const qm_val_t * giqmatrix[(1<< 4)][3][TX_SIZES_ALL]
Definition av1_common_int.h:672
int16_t u_dequant_QTX[8][2]
Definition av1_common_int.h:661
const qm_val_t * y_iqmatrix[8][TX_SIZES_ALL]
Definition av1_common_int.h:686
int qmatrix_level_y
Definition av1_common_int.h:710
int v_ac_delta_q
Definition av1_common_int.h:646
bool using_qmatrix
Definition av1_common_int.h:703
int u_dc_delta_q
Definition av1_common_int.h:631
int qmatrix_level_u
Definition av1_common_int.h:711
int base_qindex
Definition av1_common_int.h:620
int16_t v_dequant_QTX[8][2]
Definition av1_common_int.h:662
const qm_val_t * v_iqmatrix[8][TX_SIZES_ALL]
Definition av1_common_int.h:694
int16_t y_dequant_QTX[8][2]
Definition av1_common_int.h:660
int v_dc_delta_q
Definition av1_common_int.h:635
int y_dc_delta_q
Definition av1_common_int.h:626
const qm_val_t * gqmatrix[(1<< 4)][3][TX_SIZES_ALL]
Definition av1_common_int.h:676
Params related to tiles.
Definition av1_common_int.h:434
int uniform_spacing
Definition av1_common_int.h:450
int max_width_sb
Definition av1_common_int.h:437
int log2_rows
Definition av1_common_int.h:457
int min_log2_rows
Definition av1_common_int.h:469
int width
Definition av1_common_int.h:458
int max_log2_rows
Definition av1_common_int.h:477
int row_start_sb[MAX_TILE_ROWS+1]
Definition av1_common_int.h:491
int cols
Definition av1_common_int.h:435
int max_height_sb
Definition av1_common_int.h:438
unsigned int large_scale
Definition av1_common_int.h:495
unsigned int single_tile_decoding
Definition av1_common_int.h:501
int max_log2_cols
Definition av1_common_int.h:473
int log2_cols
Definition av1_common_int.h:456
int min_log2
Definition av1_common_int.h:481
int rows
Definition av1_common_int.h:436
int min_inner_width
Definition av1_common_int.h:443
int min_log2_cols
Definition av1_common_int.h:465
int col_start_sb[MAX_TILE_COLS+1]
Definition av1_common_int.h:486
int height
Definition av1_common_int.h:459
Frame level features.
Definition av1_common_int.h:365
InterpFilter interp_filter
Definition av1_common_int.h:414
bool allow_ref_frame_mvs
Definition av1_common_int.h:388
bool allow_warped_motion
Definition av1_common_int.h:384
bool allow_screen_content_tools
Definition av1_common_int.h:382
bool switchable_motion_mode
Definition av1_common_int.h:412
TX_MODE tx_mode
Definition av1_common_int.h:413
bool reduced_tx_set_used
Definition av1_common_int.h:401
bool allow_intrabc
Definition av1_common_int.h:383
int byte_alignment
Definition av1_common_int.h:423
bool coded_lossless
Definition av1_common_int.h:392
REFRESH_FRAME_CONTEXT_MODE refresh_frame_context
Definition av1_common_int.h:428
bool error_resilient_mode
Definition av1_common_int.h:407
int primary_ref_frame
Definition av1_common_int.h:419
bool disable_cdf_update
Definition av1_common_int.h:369
bool allow_high_precision_mv
Definition av1_common_int.h:374
bool cur_frame_force_integer_mv
Definition av1_common_int.h:378
bool all_lossless
Definition av1_common_int.h:396
Stores the prediction/txfm mode of the current coding block.
Definition blockd.h:222
BLOCK_SIZE bsize
The block size of the current coding block.
Definition blockd.h:228
Parameters related to Restoration Info.
Definition restoration.h:246
External frame buffer.
Definition aom_frame_buffer.h:40
Variables related to current coding block.
Definition blockd.h:570
bool left_available
Definition blockd.h:626
uint8_t * tx_type_map
Definition blockd.h:666
int mb_to_bottom_edge
Definition blockd.h:680
TXFM_CONTEXT * left_txfm_context
Definition blockd.h:740
struct macroblockd_plane plane[3]
Definition blockd.h:606
int mb_to_top_edge
Definition blockd.h:679
int mb_to_right_edge
Definition blockd.h:678
bool up_available
Definition blockd.h:622
MB_MODE_INFO * above_mbmi
Definition blockd.h:645
bool chroma_up_available
Definition blockd.h:630
TXFM_CONTEXT * above_txfm_context
Definition blockd.h:733
bool chroma_left_available
Definition blockd.h:634
PARTITION_CONTEXT * above_partition_context
Definition blockd.h:718
MB_MODE_INFO * chroma_left_mbmi
Definition blockd.h:652
TXFM_CONTEXT left_txfm_context_buffer[MAX_MIB_SIZE]
Definition blockd.h:747
int tx_type_map_stride
Definition blockd.h:671
MB_MODE_INFO * chroma_above_mbmi
Definition blockd.h:659
int mi_row
Definition blockd.h:575
int mi_stride
Definition blockd.h:582
bool is_last_vertical_rect
Definition blockd.h:787
bool is_first_horizontal_rect
Definition blockd.h:792
uint8_t width
Definition blockd.h:765
struct aom_internal_error_info * error_info
Definition blockd.h:838
CFL_CTX cfl
Definition blockd.h:894
int lossless[8]
Definition blockd.h:817
ENTROPY_CONTEXT left_entropy_context[3][MAX_MIB_SIZE]
Definition blockd.h:710
ENTROPY_CONTEXT * above_entropy_context[3]
Definition blockd.h:703
MB_MODE_INFO ** mi
Definition blockd.h:617
uint8_t height
Definition blockd.h:766
MB_MODE_INFO * left_mbmi
Definition blockd.h:640
PARTITION_CONTEXT left_partition_context[MAX_MIB_SIZE]
Definition blockd.h:725
bool is_chroma_ref
Definition blockd.h:601
int mi_col
Definition blockd.h:576
int mb_to_left_edge
Definition blockd.h:677
YV12 frame buffer data structure.
Definition yv12config.h:46